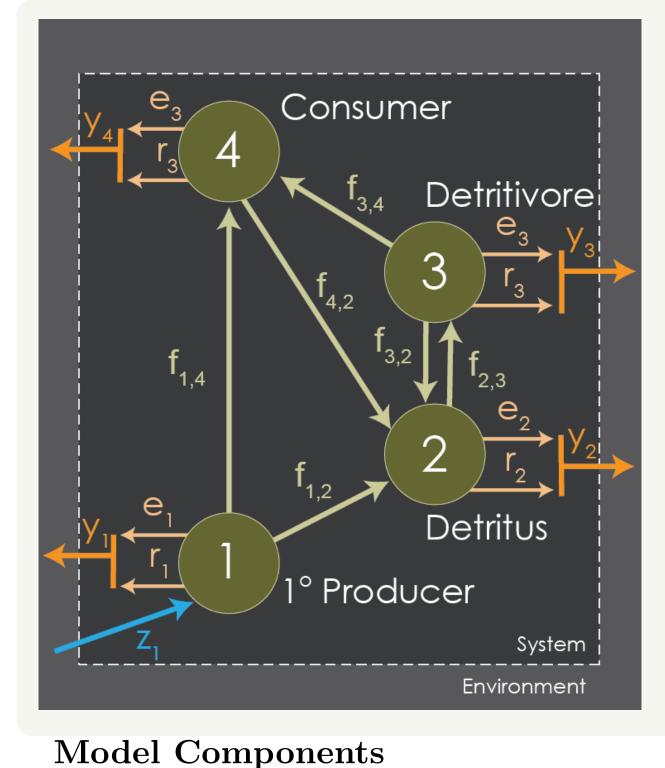
Proposed changes in the mathematical notation used for **Ecological Network Analysis** for clearer communication

Introduction

Ecological Network Analysis (ENA) is a family of methods (Fig. 1) to investigate


- •Whole (eco)system organization
- Effects of connectivity & indirect effects
- Relative importance of nodes, groups, etc.
- Environment or environs

ENA is applied to network models of energy or matter flow through and storage in an (eco)system (Fig. 2)

- 40+ years of development by multiple investigators (e.g., Patten and Ulanowicz)
- The lack of clear and consistent notation is a barrier for new researchers.

We propose a unified notation with a consistent row-to-column matrix orientation.

Network Model

Concept

Symbol

 $\mathbf{F}_{n imes n}$

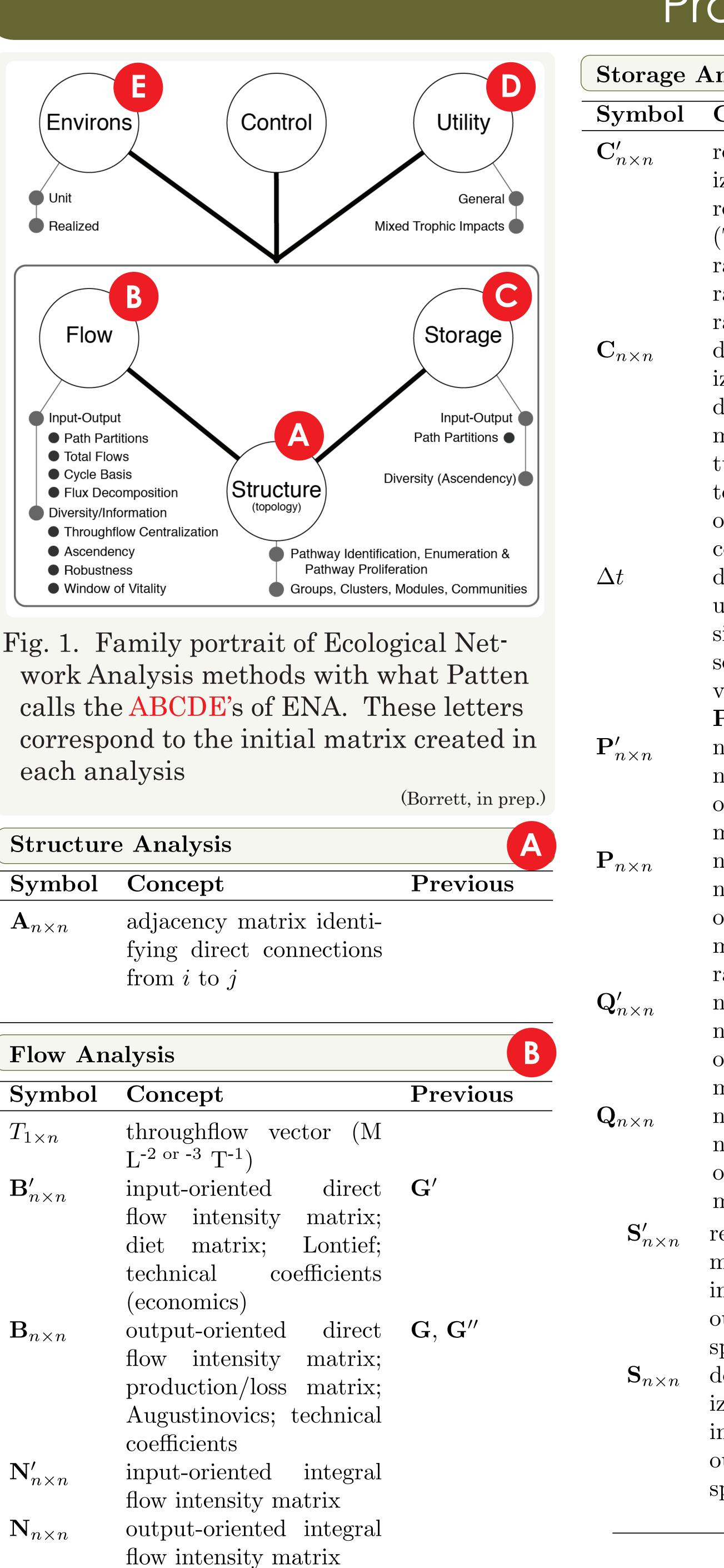
 $z_{1 \times n}$

 $r_{n \times 1}$

 $e_{n \times 1}$

 $y_{n \times 1}$

 $X_{n \times 1}$


 \mathcal{S}

 ${\mathcal M}$

 $\operatorname{Living}_{1 \times n}$

Fig. 2. Example ecosystem models. Nodes are species, groups of species, or resource pools, and edges map the flow of energy or matter.

Str
 Syn
\mathbf{A}_{n}

Flow
 Sym
$T_{1 \times r}$
$\mathbf{B}'_{n imes}$
$\mathbf{B}_{n imes}$

$= \{\mathbf{F}, \mathbf{z}, \mathbf{r}, \mathbf{e}, \mathbf{X}, \mathbf{Living}\}$	can be $-1, 0, \text{ or } 1$.
	$= \{ \mathbf{F}, \mathbf{z}, \mathbf{r}, \mathbf{e}, \mathbf{X}, \mathbf{Living} \}$

vector of inputs (M $L^{-2 \text{ or } -3} T^{-1}$)

matrix of flows from i to j (M L^{-2 or -3} T⁻¹)

vector of export losses (M $L^{-2 \text{ or } -3} T^{-1}$)

logical vector indicating if a node is living

vector of respiration losses outputs (M $L^{-2 \text{ or } -3} T^{-1}$)

vector of total outputs (y + e) (M L^{-2 or -3} T⁻¹)

vector of node storage (i.e., biomass) (M $L^{-2 \text{ or } -3}$)

stochiometric matrix whose elements indicate how the

storage value of node i change when j occurs. Values

$\hat{\mathbf{F}} = \begin{bmatrix} \mathbf{F}_{n \times n} & e_{n \times 1} & r_{n \times 1} & 0_{n \times 1} \\ 0_{1 \times n} & 0 & 0 & 0 \\ 0_{1 \times n} & 0 & 0 & 0 \\ z_{1 \times n} & 0 & 0 & 0 \end{bmatrix}_{(n+3) \times (n+3)} \mathbf{N}_{n \times n}$							
	$\mathbf{F}_{n \times n}$	$e_{n \times 1}$	$r_{n \times 1}$	$0_{n \times 1}$			
Ê _	$0_{1 \times n}$	0	0	0			\mathbf{N}'
$\mathbf{\Gamma}$ =	$0_{1 \times n}$	0	0	0			$- \cdot n \times$
	$z_{1 \times n}$	0	0	0 _	$(n+3) \times (n+3)$		$\mathbf{N}_{n imes}$
	$\begin{bmatrix} \mathbf{F}_{n \times n} \\ z_{1 \times n} \end{bmatrix}$						
I C —	$z_{1 \times n}$	$0_{n \times 1}$	$(n+1)\times($	n + 1)			

Proposed Notation

alysis	С	Utility An	Utility Analysis				
Concept	Previous	Symbol (Concept	Previous			
ecipient-storage normal-			General				
zed input-oriented di- cect flow intensity matrix (T^{-1}) ; partial turnover		C	lirect utility matrix in- licting the relationship				
ates with total turnover ates on the diagonals; ate coefficients		$\mathbf{U}_{n imes n}$ i	from j to i ntegral utility matrix in- licting the relationship from j to i				
donor-storagenormal-zedoutput-orienteddirectflowintensity		$\mathbf{\Upsilon}_{n imes n}$ t	hroughflow-scaled integral utility matrix (M $C^{-2 \text{ or } -3} \text{ T}^{-1}$)				
matrix (T^{-1}) ; partial			Mixed Trophic Analys	sis			
turnover rates with total turnover rates on the diagonals; rate coefficients discrete time interval		f c t	nput-oriented direct low intensity matrix; liet matrix; Lontief; echnical coefficients	G			
used to remove dimensions of \mathbf{C}' and \mathbf{C} ; selected to ensure con-		$\mathbf{\check{B}}_{n \times n}$ r	economics) nodified input-oriented lirect flow intensity ma- rix	\mathbf{F}, \mathbf{H}			
vergence of the \mathbf{P}' and		~	net impacts matrix	\mathbf{O}			
P power series		✓	ntegral or mixed trophic				
non-dimensional storage- normalized input-			mpacts				
normalized input- oriented direct flow matrix							
non-dimensional storage-	$\mathbf{P}^{\prime\prime}$	Environ A	Environ Analysis				
normalized output- oriented direct flow		Symbol	Symbol Concept				
matrix; partial turnover				$iron (n \times n)$			
rate			the k th unit input env the k th unit output en				
non-dimensional storage- normalized input-		$\mathbf{\bar{E}}_{k}^{\prime} = [\bar{E}_{ij,k}^{\prime}]$	the k th realized input en This is scaled to the o	environ $(n \times n)$			
oriented integral flow matrix non-dimensional storage- normalized output-	$\mathbf{Q}^{\prime\prime}$	$\bar{\mathbf{E}}_k = [\bar{E}_{ij,k}]$	ary flows. the k^{th} realized output n). This is scaled to boundary flows.				
oriented integral flow matrix							
recipient-storage nor-							
nalized output-oriented			Control Analysis				
ntegral flow matrix		Symbol	Concept				
output-oriented integral			re-scaled control matrix	x (flow)			
pecific flow matrix (T^{-1})		$\mathbf{CQ}_{n \times n}$	re-scaled control matrix	x (storage)			
lonor-storage normal-		$\mathbf{CR}_{n \times n}$	control ratio matrix				
zed output-oriented		$\mathbf{CD}_{n imes n}$	control difference matr				
ntegral flow matrix output-oriented integral pecific flow matrix (T ⁻¹)		$\mathbf{CA}_{n imes n}$ $\mathbf{CDep}_{n imes n}$	control allocation matr strength i exerts on j	,			
			control difference matr	iv the control			

Brian D. Fath Towson University

Caner Kazanci University of Georgia