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Summary

1.

 

Fussmann 

 

et al

 

. (2000) presented a simple mechanistic model to explore predator–
prey dynamics of a rotifer species feeding on green algae. Predictions were tested against
experimental data from a chemostat system housing the planktonic rotifer 

 

Brachionus
calyciflorus

 

 and the green alga 

 

Chlorella vulgaris

 

.

 

2.

 

The model accurately predicted qualitative behaviour of the system (extinction,
equilibria and limit cycles), but poorly described features of population cycles such as
the period and predator–prey phase relationship. These discrepancies indicate that the
model lacked some biological mechanism(s) crucial to population cycles.

 

3.

 

Here candidate hypotheses for the ‘missing biology’ are quantified as modifications
to the existing model and are evaluated for consistency with the chemostat data. The
hypotheses are: (1) viability of eggs produced by rotifers increases with food concen-
tration, (2) nutritional value of algae increases with nitrogen availability, (3) algal physi-
ological state varies with the accumulation of toxins in the chemostat and (4) algae
evolve in response to predation.

 

4.

 

Only Hypothesis 4 is compatible with empirical observations and thus may provide
important insight into how prey evolution affects predator–prey dynamics.
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Introduction

 

Mathematical models of interacting populations have
been analysed extensively for theoretical properties
(reviews in Berryman 1992; Abrams 2000). Such
models can predict a range of qualitative dynamics,
from equilibria to complicated behaviours including
population cycles and chaos. Each of these behaviours
has been shown to occur in real populations. Conse-
quently, there is growing interest in reconciling quan-
titative predictions of models with observed long-term
dynamics in single-species populations (e.g. Costantino

 

et al

 

. 1997; Kendall 

 

et al

 

. 1999) and multispecies com-
munities (e.g. Carpenter, Cottingham & Stow 1994;
Harrison 1994; Ellner 

 

et al

 

. 2001).

Fussmann 

 

et al

 

. (2000) combined theoretical and
empirical approaches to demonstrate that a simple
model embodying only a few mechanistic assumptions
is capable of making accurate qualitative predictions of
community dynamics. The experimental system con-
sisted of planktonic rotifers 

 

Brachionus calyciflorus

 

feeding on green algae 

 

Chlorella vulgaris

 

 with nitrogen
as the limiting nutrient for algal growth. The two species
were cultured together in chemostats (continuous
flow-through systems in a laboratory) under different
experimental conditions. Depending on those condi-
tions, the qualitative dynamic behaviour of the system
was coexistence at equilibria, coexistence on limit
cycles, or extinction of the predator or both popula-
tions. A simple mechanistic model was able to predict
each of these behaviours successfully. However, that
model did not accurately predict some quantitative
features, particularly the period and relative phases
of rotifer–algal cycles. This indicates that the model
lacked at least one important mechanism necessary to
describe the system fully.
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The goal of this paper is to gain deeper insight into
the interactions driving predator-prey cycles in the
chemostat system. We consider four biologically plaus-
ible hypotheses (described below) that might account
for mismatches between chemostat data and predic-
tions of the Fussmann 

 

et al

 

. (2000) model, targeting the
period and phase relationship of rotifer–algal cycles.
Standard predator–prey models, including the model
in Fussmann 

 

et al

 

. (2000), tacitly assume that interac-
tions between species, such as functional responses,
rely solely on 

 

quantities

 

 of  organisms. However, it is
generally accepted that the 

 

quality

 

 of  individuals can
vary with environmental condition and physiological
state, and experimental evidence suggests that quality
can substantially affect planktonic community dynamics
(Nelson, McCauley & Wrona 2001). The models in this
paper embody aspects of both quantity and quality of
organisms.

By constructing mechanistic extensions to the
Fussmann 

 

et al

 

. (2000) model, each representing a
different hypothesis, we evaluate the hypotheses based
on consistency between model simulations and exper-
imental observation. Those models that are inconsist-
ent with the observed dynamics can be discarded to
narrow the field of candidate hypotheses. This not only
increases our understanding of  a particular system,
but also provides a tractable experimental system in
which to identify, and then explore consequences of,
mechanisms that may affect prey and predator dynamics
in many systems.

 

Chemostat system and the original model

 

 

 

Chlorella vulgaris

 

 and 

 

B. calyciflorus

 

 were cultured
under controlled conditions in 380-ml glass chemostats
with continuous flow of sterile medium. Temperature
was maintained at 25 

 

±

 

 0·3 

 

°

 

C and fluorescent illum-
ination at 120 

 

±

 

 20 

 

µ

 

E m

 

−

 

2

 

 s

 

−

 

1

 

. Sterile air was continu-
ously bubbled to prevent CO

 

2

 

 limitation of algae and to
enhance mixing. The medium was designed to contain
nitrate at concentrations that limited algal growth, as
well as other nutrients, trace metals and vitamins in
nonlimiting quantities. Trials were initiated by adding
female 

 

B. calyciflorus

 

 to an established chemostat
culture of 

 

C. vulgaris

 

, and lasted between 16 and
120 days. All reproduction was asexual. Rotifers were
counted under a dissecting microscope; algae were
counted using either a compound microscope or particle
counter (CASY 1, Schärfe, Germany). See Fussmann

 

et al

 

. (2000) for further details on the experimental
system and sampling of organisms.

In a chemostat set-up, the two key parameters that
can be experimentally manipulated are nutrient con-
centration of the inflow medium 

 

N

 

i

 

 and dilution rate 

 

δ

 

(fraction of the volume replaced daily). Increasing 

 

N

 

i

 

or 

 

δ

 

 nutritionally enriches the system; however, increas-
ing 

 

δ

 

 additionally increases washout of organisms.

Chemostat trials covered a range of conditions by
using two different nutrient concentrations and 14
different dilution rates. This paper focuses on the
results from nutrient concentration 

 

N

 

i

 

 = 80 

 

µ

 

mol l

 

−

 

1

 

, at
which the majority of experiments were run.

 

  

 

The Fussmann 

 

et al

 

. (2000) model is a system of four
differential equations:

 

˜

 

 = 

 

δ

 

(

 

N

 

i

 

 

 

−

 

 

 

N
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F
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N
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eqn 1c
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 = 

 

F

 

B

 

(

 

C

 

)
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−
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δ

 

 + 

 

m

 

)

 

B

 

, eqn 1d

where 

 

N

 

 is the concentration of  nitrogen, 

 

C

 

 is the
concentration of 

 

Chlorella

 

 and 

 

B

 

 is the total concen-
tration of 

 

B. calyciflorus

 

. Because initial data indicated
that rotifer fecundity decreased with age, the model
rotifer population is structured by introducing state
variable 

 

R

 

 for the concentration of  reproductively
active 

 

B. calyciflorus

 

. The ‘dot’ notation indicates a
time derivative (e.g. 

 

˜

 

 

 

≡

 

 d

 

N

 

/d

 

t

 

). All state variables
(

 

N

 

, 

 

C

 

, 

 

R

 

 and 

 

B

 

) use the same currency of micromoles
nitrogen per litre, and so a quantitative comparison
with data requires converting model output to the
observational units.

In equation 1, nitrogen concentration determines
the recruitment rate (

 

F

 

C

 

) of 

 

C. vulgaris

 

, and 

 

C. vulgaris

 

concentration determines the recruitment rate (

 

F

 

B

 

)
of 

 

B. calyciflorus

 

. Both rates follow a Monod function
(Monod 1950), mathematically equivalent to a Holling
type II functional response (Holling 1959):

 

F

 

C

 

(

 

N

 

) = 

 

b

 

C

 

N/

 

(

 

K

 

C

 

 + 

 

N

 

) eqn 2a

 

F

 

B

 

(

 

C

 

) = 

 

b

 

B

 

C

 

/(

 

K

 

B

 

 + 

 

C

 

). eqn 2b

Here 

 

b

 

C

 

 and 

 

b

 

B

 

 are the maximum recruitment rates for

 

C. vulgaris

 

 and 

 

B. calyciflorus

 

; 

 

K

 

C

 

 and 

 

K

 

B

 

 are the half-
saturation constants of 

 

C. vulgaris

 

 and 

 

B. calyciflorus

 

.
The uptake function of 

 

B. calyciflorus

 

 in equation 1b is
scaled by the assimilation efficiency 

 

ε

 

.

 

N

 

i

 

 is the concentration of nitrogen in the inflow
medium. Nitrogen is added to the system at continuous
rate 

 

δ

 

, and all components are removed at the same
rate. Rotifers suffer additional losses due to natural
mortality at rate 

 

m

 

. Demographic structure of the
rotifer population results from the decay of fecundity
at rate 

 

λ

 

. Parameter values are derived from the chem-
ostat data or are from published sources (Table 1).

For a fixed 

 

N

 

i

 

 = 80 and low 

 

δ

 

, the model predicts
equilibrium conditions. Increasing 

 

δ

 

 leads to the birth
of stable limit cycles after crossing a Hopf bifurcation
(Strogatz 1994) near 

 

δ

 

 = 0·15 per day. The limit cycles
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persist until crossing a dilution rate near 

 

δ

 

 = 0·98,
where equilibrium conditions return. At still higher 

 

δ

 

,
recruitment is unable to outpace dilution and one or
both populations go extinct. These same behavioural
transitions occur in the chemostat trials (Fussmann

 

et al

 

. 2000). However, the observed bifurcations occur
at higher dilution rates than predicted; data indicate
a low-

 

δ

 

 bifurcation in the interval (0·32, 0·64) and a
high-

 

δ

 

 bifurcation near 

 

δ

 

 = 1·16. Aside from these dis-
crepancies, the model correctly predicts the qualitative
behaviour (equilibria, cycles and extinction) observed
in chemostat trials over a range of 

 

δ

 

 (Fig. 1).

However, the model fails to predict important
quantitative aspects. Model algae are too sparse at low
dilution rates, as are model rotifers across dilution
rates. For mid-dilution rates, the model substantially
under-predicts the period of cycles. At 

 

δ

 

 = 0·69, model
cycles have a period of 

 

∼9 days (Fig. 1c), whereas
empirical cycles have a period of ∼30 days (Fig. 1d).
Similarly, at δ = 0·95, model cycles have a period of
∼6 days (Fig. 1e), whereas empirical cycles have a
period of ∼20 days (Fig. 1f ). In addition, the relative
phases of model prey and predator cycles do not match
those observed in the chemostats. Relative phases in

Table 1. Original model parameters
  

  

Parameter Value [units] Source

bC 3·3 [day−1] Fussmann et al. (2000)
KC 4·3 [µmol N l−1] Tischner & Lorenzen (1979)
bB 2·25 [day−1] Fussmann et al. (2000)
KB 15 [µmol N l−1] Halbach & Halbach-Keup (1974)
ε 0·25 [dimensionless] Aoki & Hino (1996)
m 0·055 [day−1] Fussmann et al. (2000)
λ 0·4 [day−1] Fussmann et al. (2000)

Fig. 1. Population dynamics predicted by the original model (left panels) and observed in the chemostat experiments (right
panels). Model output is converted to the same units as from experiments using conversion estimates: 1 µmol l−1 of algae = 5 × 104

cells ml−1 and 1 µmol l−1 of rotifers = 0·5 individuals ml−1 (Borass 1980). Nitrogen concentration of the input medium is
Ni = 80 µmol l−1 and the per-day dilution rate δ is indicated for each panel. In (f ), the arrow notes a switch on day 28 from δ = 1·15
per day to δ = 0·95 per day, which crosses the δ threshold where stable equilibria give way to limit cycles.
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the model are as expected from classical predator–prey
theory in the sense that increases in rotifer density lag
shortly behind increases in algal density. The observed
prey and predator cycles, however, are almost exactly
out of phase so that predator maxima fall very close to
prey minima.

Four hypotheses and model extensions

We extend the model of Fussmann et al. (2000) in four
different ways. Each extension embodies a biological
aspect that was excluded from the original model as a
tacit, simplifying assumption:
1. Viability of eggs produced by rotifers increases with
food concentration.
2. Nutritional value of algae increases with nitrogen
availability.
3. Algal physiological state varies with the accumula-
tion of toxins in the chemostat.
4. Algae evolve in response to predation.
It is possible that all of these aspects are present in the
system to some degree. The question is whether any can
account for features in the observed cycles that went
unpredicted by the original model. Source code for the
models in MATLAB is available on request from KWS
or SPE.

(1)      
     


Experimental evidence suggests that the energetic
investment in B. calyciflorus eggs increases with food
availability, and this investment may increase the
survivorship of offspring (Kirk 1997). It is therefore
possible that rotifer recruitment per egg in the chemo-
stats may be greater when feeding on a higher algal
density. This concept is built into the original model by
replacing bB in equation 2b with an increasing function
of algal density, bB(C ),

eqn 3

In this function, bM is an upper bound on the maximum
rotifer recruitment rate for when algal density is high.
When algal density is low, bB(C ) reduces toward a
proportion α1 of bM. As algal density increases, bB(C)
approaches the upper bound at a rate controlled by α2.
We note that bB in equation 2b was originally estimated
from exponentially growing rotifer populations feed-
ing on high algal densities, and consequently serves as
an estimate of the upper bound bM under Hypothesis 1.
This leaves two new parameters, α1 and α2.

(2)     
    

The nutritional quality of  prey can affect predator
population growth rates. Nutritional value of algae as a

food source for zooplankton can vary depending on
algal size (Rothhaupt 1990) and biochemical composi-
tion (Ahlgren et al. 1990; Sterner 1993), both of which
can be affected by nutrient availability. Specifically, it
has been shown that rotifer population growth rates
can be reduced when feeding on nutrient-limited algae
(Rothhaupt 1995).

Again, the hypothesis is built into the original model
by replacing bB in equation 2b, this time with an
increasing function of nitrogen availability, bB(N ):

eqn 4

Here bm is the lower bound of bB(N ), realized when N is
zero. The original bB in equation 2b serves as an esti-
mate of the lower bound bm. It receives the opposite
interpretation as under Hypothesis 1 because bB was
originally estimated from rotifer populations feeding
on high algal densities with correspondingly low nitro-
gen concentrations. When N is abundant in the system,
bB(C ) approaches an upper bound of α3bm, where
α3 ≥ 1. The parameter α4 controls how quickly the
function approaches its upper bound as N increases.
Equation 4 tacitly assumes that the algal cell quota of
N responds instantly to the availability of N in the
medium. Although not precisely correct, we justify this
assumption by observing that the time scale of algal
population turnover is very short relative to the period
of cycles that the model is trying to explain. The nutri-
tional value model imposes two new parameters, α3

and α4.

(3)      
      
 

Kirk (1998) found that unidentified autotoxins reduce
rotifer population growth rates and individual sur-
vival. The toxic effect increases with rotifer abundance,
creating a density-dependent negative feedback. In a
chemostat set-up, toxins accumulate if  their produc-
tion rate is greater than the dilution rate, as may occur
during population cycles when rotifer density is high.

The simplest toxicity model would assume a direct
self-limiting process: rotifer-produced toxins in the
medium decrease rotifer fecundity or survival. How-
ever, analysis of the original model shows that reducing
the rotifer recruitment rate would shorten the period of
cycles, not lengthen it. To give the toxins hypothesis a
chance of explaining the period, we posit an indirect
effect via algal quality. Rotifer population growth is
assumed to diminish by feeding on toxin-contaminated
algae, and toxin contamination also reduces the algal
population growth rate.

We build this hypothesis into the original model by
structuring the algal population into two classes, one
‘sick’ (contaminated by toxins) and one ‘healthy’. State
variable C1 represents the sick class and C2 represents
the healthy class so that total algal density is C1 + C2.

b C b b b eB M M M
C( )    (   )(   ).= + − − −α α α

1 1 1 2

b N b b b eB m m m
N( )    (   )(   ).= + − − −α α

3 1 4
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The maximum recruitment rate of  sick algae is a
proportion α5 of that of healthy algae (i.e. bC → α5bC);
maximum recruitment of healthy algae is as the ori-
ginal model. Because algae are well mixed due to chem-
ostat bubbling and because rotifers do not selectively
feed due to filter feeding, each algal class is consumed
at a rate proportional to its relative density, where
total consumption by rotifers is FB(C1 + C2). However,
rotifers are only able to convert C1 into new biomass at
a fraction α6 of the rate they convert C2. The term
[(α6C1 + C2)/(C1 + C2)]FB(C1 + C2)  replaces the rotifer
recruitment rate FB(C ) in equations 1c and d.

It is assumed that the current rotifer abundance is an
index of the level of toxicity (this ignores lags in the
washout of toxins, possible at lower dilution rates).
Additionally, it is assumed that sick algae beget only
sick algae and that healthy algae become sick through
vertical transmission. The proportion I(B) of healthy
algae producing sick algae increases with the rotifer
density:

eqn 5

Here I(B) increases from 0 to 1 and α7 determines algal
sensitivity to toxins. The toxicity model introduces one
additional differential equation for a second algal class
and three new parameters, α5, α6 and α7.

(4)      


The previous hypothesis is concerned with how algal
quality may vary as a consequence of rotifer density. In
contrast, Hypothesis 4 is concerned with how algal
quality may vary as a selective response. The quality of
algae as a food source can depend on edibility (Leibold
1989) and digestibility (van Donk & Hessen 1993),
both of which may vary with changes in morphology,
structure or chemical composition. We hypothesize
that algal evolution reduces the vulnerability to preda-
tion, but only at the expense of  a reduction in the
maximum population growth rate.

The model of Hypothesis 4 replaces FB(C) in
equation 2b with FB( pC), where the function p repre-
sents algal palatability relative to algae adapted to a
predator-free environment. We posit an underlying algal
physiological variable z such that algal palatability and
maximum growth rate bC are functions of z. For con-
venience, we let z = 0 denote the optimal trait value in
the absence of rotifers so that bC(0) = b0, where b0 takes
the value of the original maximum growth rate bC

(equation 2a). But here the constant parameter bC in
equation 2a is replaced with the function bC(z):

eqn 6

This function dictates that the maximum algal growth
rate decreases at a rate controlled by the parameter α8

as z departs from zero. For α8 close to 1, equation 6

describes a curve that decreases rapidly as z departs
from 0, creating a relatively intense trade-off  between
palatability and growth rate. Increasing α8 produces a
curve that is more ‘flat’ near z = 0, which allows algae
to reduce their palatability without much cost in terms
of reduced growth rate.

Because p(z) is algal palatability relative to that of
algae adapted to a predator-free environment, p(0) = 1.
As z increases, p(z) should decrease monotonically to a
minimum possible value of p(z) = 0. These properties
are met by the simple function:

eqn 7

The level of defence against predation is 1 − p(z). The
parameter α9 measures the effectiveness of the defence
trait relative to its cost. As z increases above 0, a larger
value of α9 offers greater gains in predation defence
with a smaller sacrifice in growth rate.

To describe the dynamics of z, we incorporate the
standard model for continuous-time population growth
that depends on a single quantitative trait, dÇ/dt = wC,
where w is the Malthusian mean fitness, or, arithmetic
mean growth rate of different genotypes weighted by
their frequencies (Crow & Kimura 1970; Lynch &
Walsh 1998). We assume for simplicity that all algae at
a given time have the same trait values (i.e. there is a
single genotype). An ordinary differential equation
describes the evolution of character z (Saloniemi 1993)
and is added to the system described by equations 1, 6
and 7:

eqn 8

Here α10 is the additive genetic variance and ∂w/∂z is the
selection gradient per unit time. The evolution model
introduces one additional differential equation for
the underlying physiological trait and three new para-
meters, α8, α9 and α10.

   

The original chemostat model and each of the four
extensions are implemented using a Runge–Kutta
solver with relative tolerance of 10−4. We fit the models
to two separate data sets (from different chemostats)
displaying population cycles. Both data sets are from
chemostat trials with Ni = 80 µmol l−1; one used a dilu-
tion rate of δ = 0·69 per day and the other used δ = 0·95
per day. Approximate replicates of the two represent-
ative data sets (i.e. other data sets with Ni = 80 and δ
near 0·69 or 0·95) exhibit similar dynamics in terms of
period, phase relationship and amplitude of predator–
prey cycles. For each representative data set, we fit each
model in two different ways: trajectory matching and
‘probe’ matching.

Trajectory matching compares model solutions with
the empirical time series. We have direct data on total
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rotifer and algal densities, and consequently match
only the corresponding state variables (B and C, or C1

+ C2 in the case of the toxicity model). For each model,
the goal is to determine values of ‘free’ parameters that
minimize the objective function E1:

eqn 9

Here BP(t) is the predicted rotifer density on day t,
BO(t) is the observed rotifer density, CP(t) is the pre-
dicted algal density on day t, and CO(t) is the observed
algal density. Parameters from the original chemostat
model remain fixed at their original values (Table 1),
and we search for optimal values of the new parameters
in the model extensions (αi values). In addition, we treat
as free parameters initial conditions for each state
variable and conversions of  model units to observa-
tional units (i.e. conversion of µmol l−1 to individuals
ml−1 for both algae and rotifers). Initial conditions need
be estimated because the data sets we analyse do not
start at ‘day 1’ of the experiments, but begin after the
system has settled into a pattern of  cycling so that
initial values are no different from any other data point.
This leaves eight or ten free parameters to be estimated,
depending on the model (two or three αi values, four or
five initial conditions, and two unit conversions).

Probe matching, advocated by Kendall et al. (1999),
compares models with observations based on a suite of
time series descriptors. Here the probes are chosen to
address important features of predator–prey cycles,
namely amplitude, period and phase relationship. We
use six probes: algal maximum, algal minimum, rotifer
maximum, rotifer minimum, cycle period and phase
difference. Predicted cycle features are calculated from
model-generated time series. Observed features are
estimated from the two data sets separately by ana-
lysing smoothed versions of  the data (see Appendix
for details). As with trajectory matching, the goal is
to locate parameter values that minimize the differ-
ence between prediction and observation. The probe-
matching objective function E2 takes the same form
as the trajectory-matching version:

eqn 10

where QP(i) is predicted value of probe i and QO(i) is the
corresponding observed probe.

However to calculate E2, initial conditions of the
state variables need not be estimated because the
interest is in long-term model behaviour, which is
independent of initial conditions. Again, original
model parameters remain fixed while searching for
optimal values of αi and unit conversions. This leaves
four or five free parameters to be estimated, depend-
ing on the model (two or three αi values and two unit
conversions).

Other possible objective functions besides E1 and E2

could be used. For example, one could maximize a
likelihood function after assuming some distribution
for the errors, which in many cases yields estimates
equivalent to least squares. Objective functions could
measure squared error rather than absolute error or be
scaled by predicted values rather than observed values.
Using absolute error in E1 and E2 down-weights the
effects of outliers relative to squared error (Rousseeuw
& Leroy 1987). The denominator in E1 and E2 scales the
error to be independent of measurement units, which is
critical because algal and rotifer densities may differ by
up to six orders of magnitude. Scaling by observed
rather than predicted values provides consistency when
comparing across the different models.

For both trajectory and probe matching, constraints
are placed on the range of possible parameter estimates
if  needed to retain biological relevance. We use a two-
step fitting procedure. The first step implements a genetic
algorithm to minimize the objective function (Houck,
Joines & Kay 1995). Genetic algorithms are relatively
efficient optimization routines when the search space is
large, but in general are not necessarily highly accurate.
The second fitting step implements a locally more
accurate optimization routine, the Nelder–Mead
simplex algorithm, using optimal parameter values
obtained by the genetic algorithm as initial estimates.

Results

 

Table 2 shows the errors obtained when fitting the
various models to each data set using objective func-
tions E1 and E2. For comparison to model fits, Table 2

Table 2. Errors E1 and E2 for optimal fits of the models and of regression splines (see Appendix). Spline errors provide a measure
of baseline E1 and E2
  

Model

Error E1 Error E2 

Data set: δ = 0·69 Data set: δ = 0·95 Data set: δ = 0·69 Data set: δ = 0·95

Spline 21·74 17·26 0·00 0·00
Original 53·60 32·20 8·96 1·96
Egg viab. 35·00 27·54 4·38 1·96
Nutr. value 53·48 32·19 8·49 1·62
Toxicity 28·83 26·91 5·54 1·47
Evolution 32·41 18·83 2·60 1·39
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includes measures of baseline errors as calculated from
penalized regression splines (see Appendix). The original
chemostat model is a special case of each of the other
models, and so all of the model extensions perform at
least as well as the original model. In cases that errors
of model extensions are nearly equal to those of the
original model, it is because optimal parameter values
reduce the extension to approximate the original model
(e.g. the nutritional value model under E1 settles on
α3 ≈ 1). Table 3 shows the optimal parameter values for
each model extension.

The trajectory matches are poor (Fig. 2). The egg
viability and nutritional value models utterly fail to
replicate the dynamic behaviour in the data. The
toxicity model at δ = 0·69 is at least able to predict
rotifer cycles with approximately the correct period,
but at the expense of mismatching the period of corre-
sponding algal cycles. At the higher dilution rate, the
toxicity model is unable to reproduce the observed
dynamics. In general, the evolution model outperforms
the other models. It predicts rotifer cycles with approx-
imately the correct period in each data set and adequately

Table 3. Optimal parameter values. Each model extension also contains all parameters from the original model, held fixed during
optimization
  

  

Parameter (model)

Error E1 Error E2 

Data set: δ = 0·69 Data set: δ = 0·95 Data set: δ = 0·69 Data set: δ = 0·95

α1 (Egg viab.) 0·13 0·91 0·02 0·55
α2 (Egg viab.) 0·06 0·003 0·21 14·86
α3 (Nutr. value) 1·01 1·00 2·12 1·01
α4 (Nutr. value) 1·06 0·14 14·50 13·31
α5 (Toxicity) 0·34 0·68 0·99 0·56
α6 (Toxicity) 0·70 0·90 0·88 0·9
α7 (Toxicity) 3·07 2·14 42·57 8·49
α8 (Evolution) 1·25 1·17 1·41 1·58
α9 (Evolution) 6·24 5·28 9·93 8·45
α10 (Evolution) 0·10 0·13 0·06 0·15

Fig. 2. Optimal model fits to observed chemostat data using objective function E1. (a) Algae at δ = 0·69. (b) Rotifers at δ = 0·69.
(c) Algae at δ = 0·95. (d) Rotifers at δ = 0·95.
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describes the correct predator–prey phase relationships.
However, it does not capture algal peaks well, especially
at δ = 0·69 per day.

In probe matching, the evolution model again out-
performs the other models (Table 2). Table 4 displays
the cycle features estimated from data and predicted by
optimal model fits. The egg viability model cannot
increase the period beyond what is predicted by the
original model. The nutritional value model and the
toxicity model can potentially approximate the observed
period, but only at the expense of an increase in the
phase-relationship error term. Because of this trade-off
between the two error terms, ultimately neither model
matches the period adequately. The evolution model
best matches the observed period without a consequen-
tial increase in the error due to mismatching the phase
relationship.

In both trajectory and probe matching, parameters
are estimated separately at each dilution rate. Despite
efforts to maintain consistent conditions across replic-
ates, chemostats with nominally identical parameters
can exhibit different dynamics (Fussmann et al. 2000),
so it would not have been sensible to try fitting both
data sets by a single set of parameters in each model.
Nevertheless, a good mechanistic model should have
stable estimates across data sets and across fitting cri-
teria. The evolution model has the most stable para-
meter estimates (Table 3), as measured by the average
percentage difference between estimates for the two
data sets or error functions. Because the evolution
model performs best in terms of cycle matching and
parameter stability, we further examine the data for any
corroborative evidence of algal evolution.

   

Built into the evolution model is a trade-off  between
algal growth and resistance to predation. When rotifer
density is low, selection for high algal growth leads to

relatively low defence and high algal palatability.
Increased palatability leads to higher rotifer recruit-
ment per captured prey. This departs from the standard
assumption that the functional response depends only
on organism quantities. Instead, the evolution model
predicts that, for any given algal density, per-capita
rotifer recruitment rates are higher following low
rotifer densities than following high rotifer densities
because that is when selection promotes increased algal
palatability. Here we examine whether data from the
chemostat experiments support that prediction.

It follows from equation 1d that total rotifer
recruitment is B + (δ + m)B, so per-capita recruitment
is FB = B/B + δ + m. To estimate FB, we first estimate
a continuous version of  B(t) by fitting a regression
spline to the empirical time series of rotifer densities
(Fig. A1a,b), and then estimate B(t) as the derivative of
that spline (Fig. A1e,f ). We also estimate a continuous
version of algal densities C(t) by fitting a regression
spline (Fig. A1a,b). Figure 3 plots the estimated
time series of per-capita rotifer recruitment rates F(t)
against smoothed algal densities over a cycle from each
data set.

If  FB(t) depended solely on algal density, then Fig. 3
would illustrate a one-to-one correspondence. Instead,
it displays a pattern of multiple per-capita rotifer
recruitment rates for any given algal density, with
higher recruitment rates following low rotifer densities
as predicted by the evolution model. Similar analyses
of cycles from other data sets show the same pattern
(not plotted here), and so unless there is some unlikely
systematic bias in sampling, the pattern is not due to
measurement error. The pattern is potentially due to
shifts in the age structure accompanied by decay in
rotifer fecundity, but this is unlikely at high dilution
rates where rotifers wash out of the system before they
have a chance to senesce. In fact, the effects of age
structure simulated by the original model at δ = 0·95
are much smaller than in Fig. 3.

Table 4. Descriptive features of cycles (probes) estimated from data (QO) and predicted by optimal model fits (QP). Features are:
(1) = algal minimum (cells ml−1); (2) = algal maximum (cells ml−1); (3) = rotifer minimum (rotifers ml−1); (4) = rotifer maximum
(rotifers ml−1); (5) = cycle period (days); (6) = phase-relationship (days)
  

Feature QO QP Original QP Egg viab. QP Nutr. value QP Toxicity QP Evolution

δδδδ    ====    0·69
(1) 663 400 54 264 663 400 0·01 663 400 1310 800
(2) 2974 600 2974 600 2974 600 3147 300 697 500 1566 000
(3) 6·66 1·7 6·75 0·002 6·7 0·39
(4) 14·65 14·65 12·51 28·85 6·81 14·65
(5) 30·93 9·3 5·4 16·5 5·3 30·6
(6) 0·25 1·9 1·1 1·5 1·1 0·3

δδδδ    ====    0·95
(1) 2045 500 2045 500 2045 500 203 780 1834 200 2045 500
(2) 4689 500 3534 600 3534 600 476 010 4782 500 2274 200
(3) 1·34 1·34 1·34 1·34 1·34 1·34
(4) 5·87 1·67 1·67 1·92 2·95 5·87
(5) 20·5 5·7 5·7 6·1 12·5 20·1
(6) 2·06 1·5 1·5 1·6 3·0 0·3
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The pattern in Fig. 3 is inconsistent with both the
egg viability and nutritional value hypotheses. The
egg viability model incorrectly assumes a one-to-one
relationship between per-capita rotifer recruitment
rate and algal density. The nutritional value model
incorrectly predicts higher F(t) following rotifer
peaks because that is when algal density is low and
there is more nitrogen available in the medium. How-
ever, both the toxicity model and the evolution model
are consistent with higher F(t) following low rotifer
densities (Fig. 3). This evidence, taken in concert with
the trajectory and probe matching results, supports
selecting the evolution model as the one that best
explains the underlying biology of  the observed
predator–prey cycles. We therefore focus further atten-
tion on the behaviour of that model.

  

Across the full experimental range of dilution rates, the
evolution model maintains the qualitative predictions
(extinction, equilibria and limit cycles) from the original

model. At intermediate dilution rates, the evolution
model better predicts the period and phase relationship
of the observed cycles. In the model, high predation
rates during rotifer peaks select for well-defended algae
(Fig. 4). Subsequent rotifer troughs last until algae
evolve back, under reduced predation, to a low enough
defence level that rotifers can increase.

The evolution model is flexible enough to allow a
wide range of potential curves to describe the trade-off
between relative algal growth and level of defence, from
concave to nearly linear to convex. Assuming this
model is valid, the parameter estimates ( 8 = 1·495 and

9 = 9·19) provide insight into how the two life-history
traits relate. The level of algal defence increases quickly
to its maximum value as the underlying physiological
variable z increases from 0 (Fig. 5a). Simultaneously,
the relative maximum growth rate decreases toward its
minimum value, creating a trade-off  curve (Fig. 5b).
The curve shows that an increase in defence is accom-
panied by only a minimal decrease in the relative
growth rate, until the level of defence nears invulner-
ability where the growth rate drops dramatically.

Fig. 3. Single cycle time series of estimated per-capita rotifer recruitment rates (F = ı/∫ + δ + m) as a function of smoothed algal
densities at (a) δ = 0·69 and (b) δ = 0·95.

α̂
α̂
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Discussion

The chemostat model of  Fussmann et al. (2000)
accurately predicted the qualitative dynamics observed
in an experimental community over a range of environ-
mental conditions. The fundamental issue of  this
paper is to identify a plausible biological mechanism
to account for features in the predator–prey cycles
incorrectly predicted by the original model, particularly
the observed period and phase relationship (rotifer
maxima coinciding with algal minima). Of the four
models built to identify that mechanism, three are
inconsistent with the chemostat data. The egg viability
model cannot generate the longer period cycles. The
nutritional value model and the toxicity model can
potentially generate longer cycles, but then mismatch
the observed phase relationship. Only the evolution
model is able to match the correct period and phase
relationship simultaneously. In addition, it best
matches the chemostat data (Table 2) and has the most
stable parameter estimates across data sets and fitting
criteria (Table 3).

During predator–prey cycles, the observed per-
capita rotifer recruitment rates (Fig. 3) are compatible
with the evolution model in three ways. First, there is
not a one-to-one relationship between algal densities
and per-capita rotifer recruitment rates, explained in
the model by variation in algal palatability. In general,
this could also be explained by predator interference in
the functional response (review in Skalski & Gilliam
2001), but this is unlikely here because the phase rela-
tionship in the experimental cycles is such that there are
many pairs of times when algal and rotifer densities are
both nearly equal [C(t1) = C(t2), B(t1) = B(t2)] while the
rotifer growth rate is highly positive at one time and
highly negative at the other. Second, per-capita rotifer
recruitment rates at a given algal density are lower
when the rotifer population is decreasing than when it
is increasing, which occurs in the model due to evolu-
tion of well-defended algae during high rotifer densities.
Third, the model predicts that palatability is highest in
the middle of the rotifers’ increasing phase, and lowest
in the middle of the rotifers’ decreasing phase (Fig. 4).
This is consistent with the timing of  the greatest

Fig. 4. Behaviour of  evolution model at (a) δ = 0·69 and (b) δ = 0·95. Algal defence is 1 − p, where p is relative
palatability. Parameter values ( 8 = 1·495, 9 = 9·19, 10 = 0·105) are the average estimates from probe matching across the two
data sets.

α̂ α̂ α̂
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difference in observed per-capita rotifer recruitment
rates for a given algal density (Fig. 3).

The evolution model, although better able to match
the data than the others, still provides an unsatisfying
fit in absolute terms. In particular, the model under-
predicts the amplitude of algal cycles in both trajectory
and probe matching. This indicates that there are two
distinct pieces missing from the original chemostat model:
one to explain the period and phase-relationship and
one to explain the amplitude of algal cycles. We believe
this study has resolved the first, and the second remains
unidentified, although aspects of the rotifer functional
or numerical responses are good candidates. Trajectory
matching is a lot to ask from an incompletely specified
mechanistic model, and the lack of fit there in part
motivated the use of probe matching to reveal under-
lying mechanisms.

In the evolution model, evolutionary dynamics have
a destabilizing effect over a wide range of dilution rates.
Cycles are generated by an evolutionary trade-off
between high algal growth rates and defence against
predation. As rotifer density rises, selection for

increased algal defence drives down palatability until
rotifer density declines. The subsequent rotifer trough
lasts until algae evolve back to a low enough defence
level that rotifers can again increase. This response to
selection accrues over multiple generations, unlike the
response of phenotypic plasticity. Without the evolu-
tionary lag, the longer cycles would not be explained.

Other investigations have considered the effects of
prey evolution on the stability of prey and predator
dynamics (review in Abrams 2000). There is no general
consensus; prey evolution can be either stabilizing or
destabilizing (Abrams 2000). In destabilizing cases,
Abrams & Matsuda (1997) note the possibility of a
positive feedback between cycle amplitude and relaxed
selection on prey defence. Thus, prey evolution can
produce diverging oscillations. Here evolution does
not produce diverging oscillations, and can result in
increased or decreased amplitude of population cycles
depending on the dilution rate. Instead, our model
demonstrates that prey evolution can substantially
increase the period of predator–prey cycles and can
affect the phase relationship between them.

Fig. 5. (a) Algal population growth rate (bC) and predation defence (1 − p) as functions of the underlying physiological variable
z. (b) The resulting trade-off curve between the two life-history traits.
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The model system here provides a unique opportunity
to explore how evolution and population dynamics
interrelate, which is difficult to study outside the labo-
ratory because of the need for long-term population
data. Experiments are now in progress to test the
evolution hypothesis directly. One component has been
supported: rotifer population growth rates are reduced
when feeding on algae cultivated under grazing pres-
sure, relative to algae cultivated under comparable
mortality rates due to an elevated washout rate (T.
Yoshida, S. Ellner & N. Hairston, Jr, unpublished
data). The nature of the hypothesized physiological
trait z is not yet known. Plausible candidates include
cell size, durability of cell walls and defensive toxins.
Larger cell size may offer a refuge from predation;
harder/thicker cell walls may allow algae to pass
through rotifer guts unharmed; and defensive toxin
production may be stimulated by the presence of
predators. Experiments to test for changes in these
traits in response to predation, and for correlated
changes in algal population growth rate, are currently
being designed.

In summary, we find little evidence to support three
of  the four hypotheses meant to explain observed
features in the rotifer–algal cycles. Only the model that
includes evolutionary dynamics of prey can reproduce
the observed period and phase relationship simultane-
ously, and is supported by corroborative evidence.
While still very simple, the evolution model greatly
improves predictions for the chemostat system and
offers insights into how prey evolution can affect
predator–prey dynamics.
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Appendix

We use penalized regression splines to obtain smooth,
continuous versions of the data and estimate gradients
of population trajectories. Penalized regression splines
are detailed elsewhere (Green & Silverman 1994;
Simonoff 1996); here we focus on a key aspect that
determines the amount of fidelity to data: the smooth-
ing parameter.

We consider two different objective methods for
selecting the smoothing parameter: residual spatial
autocorrelation (RSA) and cross-validation (CV).
RSA is based on spatial autocorrelation of residuals
from the fitted model (Ellner & Seifu 2002). An insuf-
ficiently complex model is unable to fit structure in the
data, and consequently the residuals exhibit positive
autocorrelation in the space of the independent varia-
ble. The selection criterion is to adjust the smoothing

parameter until a Moran’s I statistic (a measure of
residual spatial autocorrelation) equals to zero.

Residual spatial autocorrelation tends to be conserv-
ative in selecting model complexity (Ellner & Seifu 2002).
The fits therefore do not display spurious wiggles, but
this potentially comes at the expense of underfitting
extrema. To check the validity of fits from RSA, we
compare them to fits from CV, a less conservative
method. Here the goal of CV is to choose the smooth-
ing parameter so as to minimize the leave-one-out
cross-validation score (Simonoff 1996).

RSA fits to empirical cycles are very smooth
(Fig. A1a,b). Because CV fits have less of  a tendency
to underfit extrema, we use those splines (Fig. A1c,d)
to estimate maxima and minima of algal and rotifer
densities. However, these values are reassuringly very
similar to the corresponding estimates produced by
the RSA splines. To estimate the period and phase

Fig. A1. Smoothed population densities and gradients of rotifers (- -) and algae (—) plotted alongside rotifer data (�) and algal
data (�). (a) RSA regression splines for data set δ = 0·69. (b) RSA regression splines for data set δ = 0·95. (c) CV regression splines
for data set δ = 0·69 and (d) CV regression splines for data set δ = 0·95. (e) Gradients of  the RSA splines for data set δ = 0·69.
(f) Gradients of the RSA splines for data set δ = 0·95.
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relationship, we use gradients of the RSA fits (Fig. A1e,f).
The gradients cross zero at points in time correspond-
ing to when the estimated population trajectories reach
maxima or minima. The timing of these peaks provides
an estimate of the period (twice the duration of maximum
to minimum) for each data set. As a measure of the
phase difference for each data set, we calculate the aver-
age distance between locations of rotifer maxima and

algal minima and locations of rotifer minima and algal
maxima. This is actually the phase difference minus
half  the period, which is accounted for when probe
matching.

In Table 2, baseline errors for E1 are calculated from
RSA fits. Baseline errors for E2 are zero because it is the
regression splines that are used to calculate observed
cycle features Q0 against which each model is measured.
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