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Abstract

Effective environmental impact assessment and management requires improved un-
derstanding of the organization and transformation of ecosystems in which inde-
pendent agents are linked through an intricate network of energy, matter, and in-
formational interactions. While advances have been made, we still lack a complete
understanding of the processes that create, constrain, and sustain ecosystems. Net-
work Environ Analysis (NEA) provides one approach for building novel ecosystem
insights, but it is model dependent. As ecological modeling is an imprecise art,
often complicated by inadequate empirical data, the utility of NEA may be lim-
ited by model uncertainty. Here, we investigate the sensitivity of NEA indicators of
ecosystem growth and development to flow and storage uncertainty in a phospho-
rus model of Lake Sidney Lanier, USA. The indicators are total system throughflow
(TST ), total system storage (TSS), total boundary input (Boundary), Finn cy-
cling index (FCI), ratio of indirect-to-direct flows (Indirect/Direct), indirect flow
index (IFI), network aggradation (AGG), network homogenization (HMG), and
network amplification (AMP ). Our results make two primary contributions. First,
they demonstrate that five of the indicators—FCI, Indirect/Direct, IFI, AGG
and HMG—are relatively robust to the flow and storage uncertainty in the Lake
Lanier model. This stability lets us draw robust conclusions about the Lake Lanier
ecosystem organization (e.g., phosphorus flux in the lake is dominated by internal
processes) in spite of uncertainties in the model. Second, we show that the ma-
jority of the indicators co-vary and that most of their common variation could be
mapped onto two latent factors, which we interpret as (1) system integration and
(2) boundary influences.

Key words: aquatic ecosystem, environ analysis, flow analysis, indirect effects,
network analysis, uncertainty
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“The desire for simplification is justified, but the same does not always1

apply to simplification itself, which is a working hypothesis, useful as long2

as it is recognized as such and not mistaken for reality. The greater part of3

historical and natural phenomena are [sic] not simple, or not simple in the4

way that we would like.” (Levi, 1988)5

1 Introduction and Motivation6

Ecosystems are open, non-equilibrium, thermodynamic systems that are knit7

together by an intricate network of energy, matter, and information exchanges8

among biological organisms and their environments (Capra, 1996; Higashi and9

Burns, 1991; Jørgensen, 2002; Ulanowicz, 1986). Like other types of complex10

adaptive hierarchical systems, ecosystems appear to self-organize in response11

to thermodynamic gradients (Levin, 1998; Müller, 1996; Schneider and Kay,12

1994). However, a clear understanding of ecosystem organization and transfor-13

mation has yet to crystalize, despite several empirical and theoretical attempts14

(e.g., Gunderson and Holling, 2002; Jørgensen, 2002; Odum, 1969; Ulanowicz,15

1986). This understanding is critical because ecosystems provide the natu-16

ral capital and services that support human endeavors (Costanza et al., 1997;17

Daily, 1997), and this knowledge is essential for effective ecosystem assessment18

and management (Christensen et al., 1996; Reichman and Pulliam, 1996).19

Ecosystem science has a long history of characterizing patterns of organization20

and development (e.g., Lindeman, 1942; Margalef, 1963; Odum, 1969; Teal,21
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1962). Numerous measures of ecosystem organization have been proposed in-22

cluding gross production-to-biomass ratio, species diversity, flow diversity, cy-23

cling (Odum, 1969), power (Lotka, 1922), and ascendency (Ulanowicz, 1986,24

1997). As systems develop, several of these measures appear to consistently25

increase or decrease, suggesting possible orienting forces or constraints on self-26

organization (Fath et al., 2001; Müller and Leupelt, 1998; Odum, 1969; Patten,27

1998; Schneider and Kay, 1994; Ulanowicz, 1986).28

In Jørgensen’s (2002) efforts to weave together multiple ecosystem theories29

into a coherent whole, he acknowledged that a plurality of approaches re-30

mains necessary. Holoecology (Patten, in prep.) offers one distinct approach.31

The overarching goals of the Holoecology Research Program are (1) to un-32

derstand the lawful processes that create, constrain, and sustain ecological33

systems and (2) to create a formal theory of environment. Network Environ34

Analysis (NEA) is the primary methodology of Holoecology (Fath and Pat-35

ten, 1999b; Matis and Patten, 1981; Patten, in prep.; Patten et al., 1976), and36

it is fundamentally an environmental application and extension of economic37

Input–Output Analysis (Leontief, 1966). Although it has elements in com-38

mon with other forms of ecosystem network analysis such as Input–Output39

Analysis as implemented in Ecopath (Christensen and Pauly, 1992; Chris-40

tensen and Walters, 2004) or Acendency Theory (Allesina and Bondavalli,41

2004; Ulanowicz, 1986, 1997), NEA is distinguished by its explicit environ-42

ment focus. It is used in the holistic study of ecological networks to describe43

and quantify component-level, bounded environments within systems, termed44

environs (Patten, 1978, 1981, 1982).45

A strength of NEA is its inclusion of several indicators that summarize whole-46

system organization including total system storage (TSS), total boundary47

input or output (Boundary), total system throughflow (TST ), Finn cycling48
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index (FCI), average path length or network aggradation (AGG), ratio of49

indirect-to-direct flows (Indirect/Direct), indirect flow index (IFI), network50

homogenization (HMG), and network amplification (AMP). TSS, Boundary,51

TST , FCI, and AGG are commonly used in other forms of ecosystem network52

analysis, while Indirect/Direct, IFI, HMG, and AMP are unique to NEA53

(Fath and Patten, 1999b; Patten, 1998). Collectively, these indicators provide54

insight into the flow and storage organization of ecosystem models. Based on55

these indicators, Patten (1998, in prep.) argues that ecological systems are56

integrated by indirect effects.57

The Achilles heel of these indicators, NEA, and ecosystem network analyses in58

general is that they are based on models of real ecosystems. Ecological model-59

ing remains a challenging endeavor with no consensus on the best approach or60

evaluation procedures (e.g., Ginzburg and Jensen, 2003; Jakeman et al., 2006;61

Oreskes et al., 1994). In truth, an infinite number of models fit a given data62

set, and choosing among them remains difficult. As the opening quote from63

Levi states, natural phenomena are not always simple in the way we wish.64

Previous research found that ecosystem indicators can be highly dependent65

upon the model form, especially the model aggregation (e.g., Abarca-Arenas66

and Ulanowicz, 2002; Cale and Odell, 1979; Cale and O’Neill, 1988; Gardner67

et al., 1982; Pahl-Wostl, 1992; Sugihara et al., 1997). Less research has explored68

the sensitivity of these indicators to uncertainty in the magnitude of flows and69

storages (but see Allesina and Bondavalli, 2003; Bosserman, 1983; Fath, 2004),70

which can arise from both incomplete or unknown data for model calibration71

and from evaluation or empirical measurement error.72

In this work, we determined the sensitivity and interrelations of the indicators73

of ecosystem organization listed above to flux and storage uncertainty in a74
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phosphorus-based ecosystem model of Lake Sidney Lanier, USA. Specifically,75

we investigated two hypotheses. First, we conjectured that six of the focal sys-76

tem indicators (FCI, Indirect/Direct, IFI, AGG, AMP , and HMG) would77

be robust to model flux uncertainty. Quantitatively we expected each of these78

indicators to be less variable than TST and TSS; qualitatively we expected79

their interpretations to be consistent. Support for this hypothesis lets us draw80

more robust conclusions about Lake Lanier despite uncertainty in the model81

uncertainty. Second, we anticipated that these six indicators would charac-82

terize different aspects of the same latent factor, which we tentatively term83

system integration. This hypothesis implies that the indicators will be highly84

correlated. We also expected that they would largely map into one principle85

latent factor. Support for this hypothesis would let us reduce the number of86

NEA indicators required to characterize the degree of system integration by87

indirect effects.88

2 Materials and Methods89

2.1 Study System90

Lake Sydney Lanier is a large reservoir in the headwaters of the Chattahoochee91

River in Georgia, USA that drains a 2704 km2 watershed, and at the conserva-92

tion pool elevation of 326 m it covers 150 km2 with 869 km of shoreline (Fath93

and Beck, 2005; Guan, 1993). Constructed in the 1950s by the U.S. Army94

Corp of Engineers, the reservoir was initially to provide flood control, hydro-95

electric power, and downstream navigation regulation (U.S. Army Corps of96

Engineers, 2005). However, the reservoir lies just northeast of downtown At-97

lanta, one of the fastest growing metropolitan areas in the United States for98
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the past two decades (Metro Atlanta Chamber of Commerce, 2000), and it99

has become an increasingly important source of drinking water, wastewater100

dilution, and recreation for the region. Lake Lanier is a key resource support-101

ing the expansion of Atlanta and the rapid urbanization of its own watershed102

(Fath and Beck, 2005).103

2.2 Model Construction104

To address our hypotheses, we required a model of phosphorus flux in the Lake105

Lanier ecosystem that was valid given our knowledge of the system, but that106

let us investigate the space of plausible variability. We constructed this model107

in two steps. We first built a conceptual model modified from on an existing108

model of the system. We then identified a set of plausible parameterizations109

for this model whose generated behavior matched the empirically observed110

summer behavior of the ecosystem.111

For our model, we modified the thirteen compartment Lanier ecosystem model

introduced by (Osidele and Beck, 2004). We converted the original model to

a consistent currency (phosphorus) and replaced the nonlinear mechanistic

functions with phenomenological donor controlled functions, which we mod-

eled with first-order differential equations of the generic form

dX

dt
= −λX ·X, (1)

where X is a generic compartmental state variable, λX is a rate constant,112

and t is continuous time. Since the function is donor controlled, the negative113

sign indicates a loss or transfer from the donor compartment. We made these114

model changes so that the output would readily meet the assumptions of NEA115

described in Section 2.3.116
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The modified model shown in Figure 1 has eleven state variables or storage117

compartments (mg P m−2), twenty six within-system flows (mg P m−2 d−1),118

five boundary inputs, and 4 boundary losses. The compartments represent (1)119

epilimnion soluble reactive phosphorus (SRP), (2) hypolimnion SRP, (3) phy-120

toplankton, (4) microbes (bacteria, etc.), (5) microzooplankton, (6) macrozoo-121

plankton, (7) macroinvertebrates (insect larvae, etc.), (8) larval–juvenile fish,122

(9) suspended detritus, (10) sediment detritus, and (11) sediment pore space123

phosphorus. Phosphorus enters the model via fluxes into compartments 1, 2,124

8, 9 and 11, and exits from compartments 1, 3, 7, and 8.125

Given this system conceptualization, we then used Monte Carlo simulations126

(Manly, 1991) and regionalized sensitivity analysis (Osidele and Beck, 2001;127

Spear and Hornberger, 1980) to identify parameterizations whose summer128

behavior of epilimnion phosphorus, phytoplankton, and fish fell within their129

empirically known variability. We defined the behavior targets as a range of130

values to account for uncertainty and spatial variability in the observational131

data, which we obtained from the literature for phosphorus and phytoplankton132

(Hatcher et al., 1994), and fish (Weaver, 2000). These records indicate that133

the average annual phosphorus concentration in the photic zone ranges from 2134

to 4 µg L−1, with no distinct spatial pattern of variation across the reservoir.135

Phytoplankton chlorophyll concentrations range from 7 µg L−1 at the tributary136

inlets to 2 µg L−1 at the dam site, and larval–juvenile fish average 20 to137

50 kg ha−1 lake wide. We then translated these observations into the model138

currency to prescribe the following summer behavior definition:139

• epilimnion SRP concentration should be between 58 and 70 mg P m−2;140

• phytoplankton concentration should be between 13 and 52 mg P m−2;141

• larval–juvenile fish concentration should be between 100 and 250 mg P m−2.142
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The regionalized sensitivity analysis considered 30 parameters (i.e., the mass143

transfer rate constants λX in equation 1). The program sampled each param-144

eter from a uniform distribution over the interval [0.0, 0.5], i.e., 0% to 50%145

rate of loss from each donor compartment. We considered parameterizations146

that satisfied the summer behavior definition to be plausible representations147

given our knowledge of the system. Furthermore, all successful parameteri-148

zations generated static, steady-state behavior. To insure that the sample of149

parameterizations represented the larger population, we compared the mean150

and variance of the ecosystem indicators in successful samples from trial runs151

of 500, 1000, and 5000 realizations. We used a Welsh t-test to compare the152

means as it does not assume identical variance (Dalgaard, 2002).153

2.3 Network Environ Analysis—Throughflow154

NEA is a family of input–output methods that analytically decompose ob-155

served flows and storages to identify their origins and fates within a system156

of interest (Fath and Patten, 1999b; Patten et al., 1976). This methodology157

includes analyses of structure, throughflow, storage, utility, and control within158

systems, and is extensively described in the literature (e.g., Borrett and Pat-159

ten, 2003; Fath and Borrett, 2006; Fath and Patten, 1999b; Gattie et al., 2006;160

Matis and Patten, 1981; Patten et al., 1976). Hence, we only briefly summa-161

rize the input and output variables of the output-oriented throughflow analysis162

and the calculations for the indicators of interest.163

NEA requires four input variables: (1) the observed flows from compartment164

j to i (F = (fij)), (2) the boundary inputs (zi), (3) the boundary outputs (yi),165

and (4) the storage values (xi) of an n compartment system. This method-166

ology assumes that all variables have a consistent currency (i.e., carbon or167
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phosphorus) and that the system they describe is in a static steady-state (i.e.,168

the inflows equal the outflows for each compartment). The static steady-state169

assumption is required for the current methods to partition the integral flows170

into categories based on pathway types (e.g., direct, indirect). As ecologists171

are often interested in ecosystem dynamics, this assumption limits the use of172

NEA (see discussion in Borrett et al., 2006; Fath and Patten, 1999b). How-173

ever, investigation of the static, steady-state case provides a snapshot of the174

system organization that is otherwise unavailable. This assumption influences175

the whole-system indicators because they depend on the throughflow decom-176

position, but we expect their qualitative interpretations to remain valid.177

Given these variables, the output-oriented throughflow analysis characterizes178

the fate of material flowing into the system, which is accomplished with three179

analytical steps. First, we calculate the total material flowing through each180

node, which at steady-state is181

T= T
(in)
k =

n∑

j( 6=k)1

fkj + zk (2)

= T
(out)
k =

n∑

i( 6=k)1

fik + yk.

Second, we determine the dimensionless direct flow intensities from j to i as

G = (gij) = fij/Tj. (3)

Third, we find the dimensionless integral (boundary + direct + indirect) flow182

intensities183
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N= I︸︷︷︸
Boundary

+ G1
︸︷︷︸
Direct

+ (4)

G2 + . . . + Gm + . . .︸ ︷︷ ︸
Indirect

= (I−G)−1,

where I = G0 is the matrix multiplicative identity and the elements of Gm
184

are the flow intensities from j to i over all pathways of length m. We can then185

verify that equation 2 is a true partition of the input flows across the many186

pathways by ensuring that T = Nz. From these initial calculations, we then187

derive the indicators of whole-system organization shown in Table 1.188

2.4 Data Analysis189

Our data analysis involved several steps. First, we calculated the whole-system190

indicators for each plausible model parameterization using a modified version191

of the MATLAB function NEA.m (Fath and Borrett, 2006). We then compared192

the coefficient of variation for each indicator to evaluate robustness with the193

assumption that more robust indicators are less variable. We chose to use the194

dimensionless coefficient of variation because the indicator’s absolute values195

are measured on different scales. For example, TST has units of mg P m−2,196

and Indirect/Direct is a dimensionless ratio where 0 < Indirect/Direct < ∞.197

The variability of TST , TSS, and Boundary provided a baseline indication198

of the flow and storage variability in the alternative parameterizations.199

We used two statistical approaches to determine whether the indicators char-200

acterized different aspects of any underlying factors. We initially evaluated the201

correlation strength of the indicators using ordinary least-squares regression.202

Then, we detected latent or underlying variables with principle components203
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factor analysis (Grimm and Yarnold, 1995; Johnson, 1998), using the Kaiser204

criterion to select the number of relevant factors. These statistical methods205

assume that the variable distributions are normal and that the relationships206

are linear. To meet these assumptions, we used the natural log transformation207

of TST , TSS, Indirect/Direct, and AGG. We used a combination of MAT-208

LAB (version 6.5, The Mathworks, Inc.) and R (R Development Core Team,209

2005) for our calculations.210

3 Results211

There are three aspects to our results. We first show results of our model212

identification and illustrate why the sample used for subsequent analysis is213

representative of the space of valid flow–storage models. We then present the214

ecosystem indicator variability within this sample of model parameterizations.215

Finally, we describe relationships among the indicators.216

3.1 Model Identification217

With the methodology described in Section 2.2, we identified multiple model218

parameterizations whose generated behavior satisfied our empirically derived219

criteria for epilimnion phosphorus, phytoplankton, and fish storage (Figure 2).220

Monte Carlo simulations with sample sizes of 500, 1000, and 5000 produced221

14, 18, and 90 plausible parameterizations, respectively. To determine if these222

samples represent the population of valid parameterizations, we compared the223

mean and variability of the ecosystem indicators among the samples, shown in224

Figure 3, and found no statistically significant differences between the samples225

for TST , TSS, FCI, Indirect/Direct, IFI, AGG, and AMP . However, sam-226
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ple variance of the total boundary inputs (Boundary) is significantly different,227

increasing with sample size, and the mean and variability of HMG is statis-228

tically different between the 500 and 5000 trials. While a larger sample size229

might have stabilized results for total boundary flow and homogenization, we230

concluded that, for our purposes, the 90 plausible parameterizations provide a231

large enough sample size to address our hypotheses. Therefore, all subsequent232

analysis is of the 90 plausible parameterizations.233

While each of the 90 parameterizations generates a valid model because they234

satisfy the behavior criteria in Section 2.2, Table 2 shows that there remains235

substantial uncertainty in the phosphorus flow and storage values. For exam-236

ple, phosphorus in the sediment pore space had a mean of 341.3 (±588.7).237

Boundary flows were less variable with a maximum standard deviation of238

21.5 associated with the largest mean boundary from the larval–juvenile fish239

compartment. Internal system flows ranged from a minimum of 4.3 (±2.7)240

from phytoplankton to epilimnion P to a maximum of 55.8 (±47.2) from the241

hypolimnion to the microbial compartment. Notice that phosphorus stored in242

the epilimnion, phytoplankton, and larval–juvenile fish varies the least because243

these compartments are constrained by the empirical observations.244

3.2 Indicator Variability245

Table 3 reports the mean and variability of the NEA ecosystem indicators from246

the 90 model parameterizations. The mean and standard deviation of TST ,247

Boundary, and TSS are 749 (±303), 96 (±20) and 1634 (±985), respectively.248

The mean FCI indicates that recycling contributed on average 39% of phos-249

phorus TST in Lake Lanier. We expected a large degree of recycling because250

we are analyzing an ecosystem model of phosphorus cycling. Furthermore, the251
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values of IFI and the Indirect/Direct suggest that a large fraction of TST252

comes from indirect flows. The degrees of AGG, HMG, and AMP imply that253

(1) an average input passes through an average of 7.84 nodes before exiting254

the system, (2) the off-diagonal integral flow probabilities were 3 times more255

evenly distributed than the direct flow probabilities, and (3) on average 22%256

of the integral flow probabilities exceeded unity. This degree of amplification257

indicates that generally two compartments received more than a unit input,258

probably due to recycling.259

To compare the relative variability of the ecosystem indicators, we calculated260

their coefficients of variation (CV; Table 1). The CV of TST (0.40) and TSS261

(0.60) reflect the whole system flow and storage variability due to model un-262

certainty, so we used these values as benchmarks to compare the other seven263

indicators. IFI and HMG have the lowest CVs at 0.10, while AMP varies264

the most at 0.59. AMP is the only indicator to have a CV larger than TST ,265

close to TSS. The CV of AGG and Indirect/Direct are similar at 0.34 and266

0.38 respectively, which is close to that of TST . FCI is less variable at 0.28,267

and Boundary is 0.21. Given these quantitative results, the relative variability268

and hence the robustness of the indicators is not uniform.269

Despite their quantitative variability derived from model uncertainty, the qual-270

itative interpretations of the indicators are robust. In all 90 parameterizations271

we conclude that recycling was a large if not dominant source of phospho-272

rus flux. Indirect/Direct always surpassed unity implying that indirect flows273

were dominant, and network homogenization, amplification, and aggradation274

always occurred.275
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3.3 Indicator Relations276

Analysis of the statistical relationships among the ecosystem indicators re-277

vealed several interesting patterns. We first describe the correlations among278

the variables, and then explain the results of our factor analysis.279

The pairwise scatter plots of the indicator combinations shown in Figure 4280

reveal several close associations. In 27 of 36 cases there is a statistically sig-281

nificant positive association between the variables (Table 4). For example,282

strong positive associations exist between FCI, ln(Indirect/Direct), IFI,283

ln(AGG), and AMP , whose correlation coefficients ranged from 0.89 to 0.98.284

Both the scatter plots and correlation coefficients suggest that several of these285

indicators may be influenced by the same underlying factor, lending support286

to our second hypothesis. However, in some cases a linear model may not be287

the most appropriate (e.g., between ln(Indirect/Direct) and IFI). Boundary288

and HMG provide exceptions to the trend. Although Boundary does increase289

with ln(TST ) and ln(TSS), it is not significantly correlated with the other290

variables. HMG shows relatively weak correlations with the other indicators,291

three of which are not statistically significant.292

We used a principle component factor analysis to further evaluate these asso-293

ciations. After examining several alternatives (not shown) we decided that two294

factors are appropriate for the data, which is supported by the Kaiser crite-295

rion. Only two correlation matrix eigenvalues are larger than unity (λ1 = 5.94296

and λ2 = 1.46), which implies that only the first two factors account for more297

variability than any single variable. Furthermore, the first factor captures 65%298

of the variance and the cumulative variance accounted for by the two factors299

was 80%. Including a third factor only increased this to 85%. The factor load-300

ings shown in Table 5 indicate the correlation of each NEA indicator with301
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the two factors. Factor 1 is highly associated with the variability in ln(TST ),302

FCI, ln(Indirect/Direct), IFI, ln(AGG) and AMP . HMG, ln(TSS), and303

Boundary appear to have a small role in Factor 1. Boundary dominates Fac-304

tor 2, with minor contributions from ln(TST ) and ln(TSS).305

In contrast to principal components analysis, factor analysis only examines306

the common variation of the variables (Tabachnick and Fidell, 1983). Indica-307

tor uniqueness indicates the proportion of variation not in common with the308

other variables (Table 5). HMG has the highest uniqueness factor, followed309

by ln(TSS), and then AMP . The remaining variables had a uniqueness factor310

below 0.10.311

Figure 5 illustrates these results with a plot of the factor loadings. In this312

plot, an indicator’s distance from the origin indicates its strength of asso-313

ciation with the factor represented by the axis. As ln(AGG) is the furthest314

distance from the origin of the x-axis, it is the most highly associated with315

Factor 1. This plot emphasizes the clustering of the variability of ln(AGG),316

IFI, ln(Indirect/Direct), FCI, and AMP , and their distance from variation317

in total boundary flux (Boundary). Three factors do not fall along an axis—318

HMG, ln(TSS), and ln(TST )—which could make interpretation of the fac-319

tors difficult. However, the uniqueness vector indicates that variation in HMG320

and ln(TSS) is largely independent of the other indicators, and ln(TST ) is a321

special case that we address in the discussion.322

4 Discussion323

The results reported here generally support our hypotheses regarding indi-324

cator robustness and their interrelationships, but they also suggest a more325
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complicated story than we initially expected. In this Section, we discuss the326

evidence for each hypothesis, offer additional explanations for these results,327

and interpret their significance for the growth and development of ecological328

systems in general and Lake Lanier in particular.329

4.1 Indicator Robustness330

The NEA indicators of ecosystem organization are qualitatively consistent331

and quantitatively differentially robust, lending support to our first hypoth-332

esis. Qualitatively the index interpretations did not change. Indirect flows333

consistently dominate direct, both indirect and cycled flows consistently com-334

prise a large proportion of TST , and some degree of network aggradation,335

network homogenization and network amplification occur. Quantitatively, the336

indicators have differing degrees of robustness, decreasing in variability as337

AMP > Indirect/Direct > AGG > FCI > HMG = IFI. Given the Lake338

Lanier model structure and the relatively large flow and storage uncertainty,339

the magnitudes of network homogenization and indirect flow index are re-340

markably consistent.341

We claim that the small variability in the ecosystem indicators lets us cir-342

cumvent part of the modeling and data uncertainty to draw more robust con-343

clusions regarding the condition of the Lake Lanier ecosystem. Although we344

lack certainty about the true summer flux and storage of phosphorus for some345

of the model compartments, we expect the values to occur within our model346

parameterizations. Thus, the more constrained ecosystem indicators should347

be informative of the real system organization. An alternative interpretation348

is that an indicator’s consistency implies that it is uninformative because it349

lacks the necessary sensitivity. We doubt this is the case as previous appli-350
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cations of these indices demonstrate a wide range of values for these indices351

(e.g., Borrett et al., 2006; Fath, 2004; Finn, 1980).352

From this study, we draw two primary conclusions about the Lake Lanier353

ecosystem organization. First, internal processes heavily influence phospho-354

rus flow and storage. This is evident in the consistently high indirect flow355

index, indirect-to-direct ratio, and degree of recycling. This result suggests a356

relatively well developed ecosystem as the system gains high utility from the357

phosphorus inputs. Second, based on the robust measure of network homoge-358

nization we conclude that even though phosphorus storage is heterogeneous,359

phosphorus in the flows is well mixed.360

4.2 Indicator Interrelations361

Our second hypothesis anticipated that the NEA indicators were different362

measures of the same underlying factor, which we expected to be a form363

of functional connectivity we termed system integration. The results revealed364

many associations among the indicators and that their common variance could365

be largely partitioned into two latent factors. We can chiefly attribute common366

variance in six of the nine measures (TST , FCI, Indirect/Direct, IFI, AGG,367

and AMP ) to one latent factor, which suggests that they capture different368

aspects of a common unmeasured system variable. In addition, we ascribe369

total boundary flows (Boundary) and a portion of TST is attributed to a370

second factor. Together these latent factors account for about 80% of the total371

variance. These results support our hypothesis with one major exception: the372

variation of HMG has a high uniqueness factor.373

Further consideration of these indicators explains why the relationships exist374

among the variables in Factor 1. From a given network topology there are two375
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ways of increasing TST . The first is to increase energy–matter input into the376

system. This action increases TST , but in this case the organization of the377

system remains constant. The second approach is to increase the system recy-378

cling by reapportioning the flux distribution, which necessarily increases IFI379

because by definition all cyclic flows are indirect 1 . In addition, this recycling380

likely increases Indirect/Direct (see Higashi and Patten, 1989; Patten, 1991,381

for additional detail). Another consequence is that the proportion of TST de-382

rived from Boundary will decline and its inverse, AGG, will increase. Likewise383

AMP should increase because the proportion of compartments receiving more384

flow than they contribute depends directly dependent upon recycling (Patten385

et al., 1990). Thus, cycling plays a central role in each of these six indicators.386

Our discovery that the nine ecosystem indicators cluster around two latent387

factors denotes that they contain some redundancy, but we wonder if the388

factors might have additional import. Grimm and Yarnold (1995) advise that389

caution is wise when interpreting factor analysis, but our findings suggest that390

we can link the two emergent factors to the conceptual model of ecosystem391

growth introduced by Jørgensen et al. (2000) and extended by Fath et al.392

(2004). These authors describe four forms of growth:393

Form 0—Boundary growth. A constant source of low-entropy material394

sustains open thermodynamic systems and fundamentally limits the work a395

system can perform. This growth Form 0 represents the increase in bound-396

ary input.397

Form I—Structural growth. This growth type corresponds to increasing398

biomass caused by component growth in number, size, and types.399

Form II—Network growth. This form of growth captures shifts in the in-400

1 The converse is not necessarily true: all indirect flows are are not cyclic. This
implies that IFI ≥ FCI and that the values will converge as cycling increases.
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ternal organization of the system, which includes an increase in connectivity401

and recycling of energy and matter.402

Form III—Informational growth This type of growth augments the inter-403

nal order of the informational content of the system, and includes behavioral404

changes from a more exploitative to a more conservative system as well as405

possible increases in genetic information of component organisms.406

As cycling is the essential element linking TST , FCI, Indirect/Direct, IFI,407

AGG, and AMP in Factor 1, we suspect that this Factor represents Growth408

Form II. We also expect HMG to be associated with this growth type even409

though its variability is largely independent. Furthermore, energy–matter cy-410

cles are fundamental to system growth and development because they estab-411

lish routes of cybernetic feedback (DeAngelis et al., 1986; Patten and Odum,412

1981), and provide a means of integrating ecosystem flows and storage (Pat-413

ten et al., 1990; Ulanowicz, 1983). Therefore, we tentatively suggest that this414

factor is Patten’s hypothesized system integration through indirect effects.415

Factor 2 captures both the variability of boundary flows and a portion of416

the variability of TST and expresses the effects of environmental variability.417

Therefore, this factor relates to Growth Form 0. Notice that TST is a com-418

ponent of this factor as well as the first because boundary flows and internal419

flows are combined in its calculation.420

Variation in TSS has a large uniqueness factor, so it was only weakly associ-421

ated with Factor 1 and Factor 2. By definition, TSS is an indicator of Growth422

Form I.423
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5 Related Work424

The work reported here builds upon previous developments in ecological net-425

work analysis. In this section, we briefly describe related work that established426

or suggested indicator interrelationships as well as one study that anticipated427

the indicator robustness. We conclude by highlighting the unique contribution428

of our work.429

Several studies laid the foundations for the indicator interrelationship hypoth-430

esis. Higashi (Higashi and Patten, 1986; Patten, 1991; Patten et al., 1990)431

showed algebraically that increasing the number of nodes, connectance, stor-432

age, strength of direct flows, or the amount of recycling tends to increase433

Indirect/Direct. Hence, the positive association of this ratio with TSS, TST434

and FCI is not surprising. Further, Christensen (1995) compared several435

proposed network indicators of ecosystem maturity in a study of 41 aquatic436

ecosystem models, which had a consistent currency but varied in the number of437

nodes and connectance. He found a strong correlation between FCI and AGG,438

but they were not well correlated with TST . In his principle components anal-439

ysis, FCI and AGG were closely associated with his first component, while440

TST was more closely associated with the second. This finding agrees with441

our results, but ours shows a stronger relationship between TST and FCI442

and AGG. The different model currencies likely drive this incongruity. With443

a more analytical approach, Fath et al. (2001) used a five mode pathway de-444

composition to show how simultaneous increases in TST , TSS, Boundary and445

FCI were reconcilable. In their discussion of AMP and HMG, Patten et al.446

(1990) illustrated how recycling influence both of these indicators. When Fath447

and Patten (1999a) introduced the quantitative measure for HMG, they con-448

firmed that it tended to increase with cycling in a twenty node model. Later,449
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Fath (2004) used large (n > 100) cyber-ecosystem models to show that both450

Indirect/Direct and HMG tended to increase with FCI. However, network451

amplification never occurred in these models, which may be attributed to the452

restricted cycling range in the cyber-ecosystem models (0.14 < FCI < 0.26).453

Borrett et al. (2006) observed a strong association between Indirect/Direct454

and AGG in sixteen nitrogen network models of the Neuse River Estuary.455

These networks were highly retentive and exhibited a large degree of cycling.456

The first characteristic caused Direct to be nearly equivalent to Boundary457

and the second characteristic made Indirect and TST to converge such that458

TST/Boundary ∼ Indirect/Direct.459

Allesina and Bondavalli’s (2004) study of the effects of alternative flow bal-460

ancing procedures is the most closely related work to our investigation of the461

indicator’s robustness to uncertainty. They found that altering model coeffi-462

cients ±10% led to small changes in the balanced system’s TST 2 , such that463

50% of the resultant TST values were less than 2.5% of their original value.464

Thus, TST appears to be robust to these flow perturbations. Significantly, the465

authors compared the TST of a flow model that is slightly out of steady-state466

to a balanced one. In contrast, all 90 model parameterizations used in our467

study generated steady-state behavior. Furthermore, our investigation covers468

a wider range of network indicators whereas Allesina and Bondavalli (2003)469

restrict their investigation to TST and Ascendency, which is not in our study.470

We conclude that several of the relationships among the NEA indicators were471

known or anticipated from independent investigations. Our work brings these472

indicators together into one quantitative study and begins to describe the473

quantitative forms of these relationships. In addition, our data support the474

2 These authors calculate TST by summing both inputs and outputs in their calcu-
lation, whereas we include only one direction of these boundary flows because total
inputs equal total outputs in a steady-state system.
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hypotheses that many of these indicators are characterizing similar aspects of475

ecosystem organization and are robust under flow and storage uncertainty.476

6 Future Work477

This research is a step toward understanding the effect of system uncertainty478

on the NEA ecosystem indicators, but additional work is necessary to eval-479

uate the generality of the results and to determine their significance for en-480

vironmental impact assessment and management. We must be careful not to481

overgeneralize from this case study. Our approach reveals the influence of flow482

and storage uncertainty on the NEA indictors in Lake Lanier given the ini-483

tial conceptual model. An important next step is to investigate the effect of484

uncertainty in the model structure (e.g., conceptual model, flow formulation).485

Further, we require additional case studies for two reasons. First, our anal-486

ysis of indicator relationships is limited by their small range, which results487

from their robustness. Second, we ultimately want to use these indicators to488

characterize the Lake Lanier ecosystem’s healthy, maturity, or integrity. These489

classifications are relative and require meaningful comparisons that do not yet490

exist. More case studies will let us develop a meaningful scale to evaluate491

ecosystem condition in the future.492

7 Concluding Remarks493

The results of this study make two primary contributions to ecosystem network494

analysis. First, they demonstrate that five of the ecosystem network analysis495

indicators—FCI, Indirect/Direct, IFI, AGG and HMG—are robust to the496

flow and storage uncertainty in the Lake Lanier phosphorus model. This find-497
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ing lets us bypass the modeling problem and conclude that internal processes498

heavily influence phosphorus flux in the Lake Lanier ecosystem. Second, the499

results show that the majority of the nine ecosystem indicators investigated500

co-varied and that their common variation could largely be mapped into two501

latent factors, which we have tentatively interpreted as (1) system integration502

(Growth Form II) and (2) boundary (Growth Form 0). This case study pro-503

vides a window into the workings of network environ analysis and the Lake504

Lanier ecosystem. Continued research into ecological network analysis sensi-505

tivity to model uncertainty will lead to a better understanding of when our506

model simplifications are justified, and when we must alter our simplifications507

to better match natural phenomena.508

8 ACKNOWLEDGEMENTS509

We would like to thank B.C. Patten, M.B. Beck, D.K. Gattie, H.R. Pulliam,510

P.G. Verity, S. Allesina, W. Bridewell, and an anonymous reviewer for their511

constructive reviews of this manuscript. This work was supported in part by512

EPA/NSF Water and Watershed Program Grant No. R825758 and NSF Grant513

No. IIS-0326059.514

References515

Abarca-Arenas, L. G., Ulanowicz, R. E., 2002. The effects of taxonomic ag-516

gregation on network analysis. Ecol. Model. 149, 285–296.517

Allesina, S., Bondavalli, C., 2003. Steady state of ecosystem flow networks: A518

comparison between balancing procedures. Ecol. Model. 165, 221–229.519

Allesina, S., Bondavalli, C., 2004. Wand: An ecological network analysis user-520

friendly tool. Environmental Modelling & Software 19, 337–340.521

Borrett, S. R., Patten, B. C., 2003. Structure of pathways in ecological net-522

23



works: Relationships between length and number. Ecol. Model. 170, 173–523

184.524

Borrett, S. R., Whipple, S. J., Patten, B. C., Christian, R. R., 2006. Indi-525

rect effects and distributed control in ecosystems. Temporal variability of526

indirect effects in a seven-compartment model of nitrogen flow in the Neuse527

River Estuary (USA)—Time series analysis. Ecol. Model. 194, 178–188.528

Bosserman, R. W., 1983. Flow analysis sensitivities for models of energy or529

material flow. Bull. Math. Bio. 45, 807–826.530

Cale, W. G., Odell, P. L., 1979. Concerning aggregation in ecosystem models.531

In: Halfon, E. (Ed.), Theoretical Systems Ecology. Academic Press, New532

York, pp. 55–77.533

Cale, W. G., O’Neill, R. V., 1988. Aggregation and consistency problems in534

theoretical models of exploitative resource competition. Ecol. Model. 40,535

97–107.536

Capra, F., 1996. The Web of Life: A New Scientific Understanding of Living537

Systems. Anchor Books, New York.538

Christensen, N. L., Bartuska, A. M., Brown, J. H., Carpenter, S., D’Antonio,539

C., Francis, R., Franklin, J. F., MacMahon, J. A., Noss, R. F., Parsons,540

D. J., Peterson, C. H., Turner, M. G., Woodmansee, R. G., 1996. The report541

of the Ecological Society of America committee on the scientific basis for542

ecosystem management. Ecological Applications 6, 665–691.543

Christensen, V., 1995. Ecosystem maturity—towards quantification. Ecol.544

Model. 77, 3–32.545

Christensen, V., Pauly, D., 1992. Ecopath-II—a software for balancing steady-546

state ecosystem models and calculating network characteristics. Ecol.547

Model. 61, 169–185.548

Christensen, V., Walters, C. J., 2004. Ecopath with Ecosim: Methods, capa-549

bilities and limitations. Ecol. Model. 172, 109–139.550

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B.,551

Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton,552

P., van den Belt, M., 1997. The value of the world’s ecosystem services and553

natural capital. Nature 387, 253–260.554

Daily, G. C. (Ed.), 1997. Nature’s Services. Island Press, Washington, D.C.555

Dalgaard, P., 2002. Introductory Statistics with R. Springer, New York.556

DeAngelis, D. L., Post, W. M., Travis, C. C., 1986. Positive Feedback in557

Natural Systems. Springer–Verlag, New York.558

Fath, B. D., 2004. Network analysis applied to large-scale cyber-ecosystems.559

Ecol. Model. 171, 329–337.560

Fath, B. D., Beck, M. B., 2005. Elucidating public perceptions of environ-561

mental behavior: A case study of Lake Lanier. Environmental Modelling &562

Software 20, 485–498.563

Fath, B. D., Borrett, S. R., 2006. A MATLAB c© function for network environ564

analysis. Environmental Modelling & Software 21, 375–405.565

Fath, B. D., Jørgensen, S. E., Patten, B. C., Straškraba, M., 2004. Ecosystem566
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Table 1. Network Environ Analysis indicators of whole-system organization.

Indicator Symbol Description Formula

Total System Throughflow TST Sum of total flow into or
out of nodes

n∑

k=1

Tk =
n∑

k=1

n∑

k=1

(fkj + zk) =
n∑

k=1

n∑

k=1

(fik + yk)

Total System Storage TSS Total amount of model
currency stored in nodes

n∑

k=1

xk

Total Boundary Flow Boundary Total amount of bound-
ary input or output

n∑

i=1

zi =
n∑

j=1

yj

Finn Cycling Index FCI Cyclic portion of TST

n∑

i=1

((nii − 1)zi)

Indirect/Direct Indirect/Direct Ratio of indirect to direct
flow

∑
(N− I−G)z∑

Gz

Indirect Flow Index IFI Proportion of TST de-
rived from indirect flows

∑
(N− I−G)z

TST

Homogenization HMG Tendency to uniformly
distribute causality
across the network

CV(G)
CV(N)

Amplification AMP Proportion of flows ob-
taining more than face
value

#nij > 1 (i 6= j)
n(n− 1)

Aggradationa AGG Average number of times
an average input passes
through the system

TST

Boundary

a Aggradation is also known as average path length (Finn, 1976), flow multiplying ability (Han, 1997), and multiplier effect (Samuelson,
1948).
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Table 2. Average (±SD) inter-compartment flows (F) oriented from column to row, inputs (z), outputs (y) in mg P m−2 d−1, and storage
(x, mg P m−2) for 90 plausible models of phosphorus flow and storage in Lake Lanier. Compartment labels are in the vector Names.

F =




0 33.6 (10.1) 4.3 (2.7) 0 0 0 0 0 0 0 0
0 0 0 28.3 (29.6) 0 0 0 0 0 0 39.9 (25.8)

25.3 (5.3) 0 0 0 0 0 0 0 0 0 0
0 55.8 (47.2) 0 0 0 0 0 0 33.9 (28.4) 0 0
0 0 5.2 (3.1) 29.6 (25.2) 0 0 0 0 38.2 (32.4) 0 0
0 0 5.1 (3.3) 0 16.8 (15.1) 0 0 0 35.7 (24.0) 0 0
0 0 0 0 18.8 (16.7) 0 0 0 38.3 (25.4) 0 0
0 0 0 0 18.1 (13.9) 28.4 (17.2) 18.8 (16.0) 0 0 0 0
0 0 5.4 (3.2) 31.7 (29.1) 19.3 (18.1) 29.1 (25.6) 19.2 (16.9) 39.8 (25.7) 0 0 0
0 0 0 0 0 0 0 0 26.2 (23.3) 0 0
0 0 0 0 0 0 0 0 0 26.2 (23.3) 0




Names =




Epilimnion P
Hypolimnion P
Phytoplankton
Microbes
Microzooplankton
Macrozooplankton
Macroinverts
Larval/Juvenile fish
Suspended detritus
Sediment detritus
Pore Space P




z =




6.9 (5.3)
21.1 (9.9)

0
0
0
0
0

27.5 (12.6)
27.6 (11.2)

0
13.8 (8.6)




yT =




19.4 (9.1)
0.0
5.3 (2.9)
0.0
0.0
0.0

19.1 (16.0)
53.0 (21.5)
0.0
0.0
0.0




x =




64.4 (3.5)
228.5 (208.7)
22.3 (7.0)

129.9 (106.7)
77.6 (50.1)

154.0 (223.0)
81.4 (55.8)

171.1 (42.5)
152.6 (83.5)
240.0 (398.4)
341.3 (588.7)



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Table 3
Mean, standard deviation (SD), and coefficient of variation (CV) of Network Envi-
ron Analysis ecosystem indicators to flow and storage uncertainty in a phosphorus
model of Lake Lanier. They are ordered by decreasing variability described by CV

Indicator Mean SD CV

TSS 1634 985 0.60
AMP 0.21 0.12 0.59
TST 749 303 0.40
Indirect/Direct 7.45 2.83 0.38
AGG 7.84 2.69 0.34
FCI 0.39 0.11 0.28
Boundary 96 20 0.21
HMG 3.10 0.31 0.10
IFI 0.75 0.07 0.10
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Table 4
Pairwise linear ordinary least-squares regression coefficients (Y = b + mX).

Y X b m Pr(> F )

ln(TST ) ln(TSS) 2.94 * 0.50 * 0.00 *
ln(TST ) Boundary 5.78 * 0.01 * 0.00 *
ln(TST ) FCI 5.53 * 2.63 * 0.00 *
ln(TST ) ln(Indirect/Direct) 5.01 * 0.80 * 0.00 *
ln(TST ) IFI 3.62 * 3.94 * 0.00 *
ln(TST ) ln(AGG) 4.75 * 0.90 * 0.00 *
ln(TST ) HMG 5.88 * 0.23 0.07
ln(TST ) AMP 6.09 * 2.22 * 0.00 *
ln(TSS) Boundary 6.75 * 0.01 * 0.03 *
ln(TSS) FCI 6.41 * 2.20 * 0.00 *
ln(TSS) ln(Indirect/Direct) 5.87 * 0.72 * 0.00 *
ln(TSS) IFI 4.44 * 3.78 * 0.00 *
ln(TSS) ln(AGG) 5.48 * 0.89 * 0.00 *
ln(TSS) HMG 5.64 * 0.54 * 0.00 *
ln(TSS) AMP 6.92 * 1.66 * 0.00 *
Boundary FCI 105.76 * -22.67 0.26
Boundary ln(Indirect/Direct) 108.03 * -5.75 0.33
Boundary IFI 132.44 * -47.43 0.11
Boundary ln(AGG) 116.34 * -9.66 0.14
Boundary HMG 140.14 * -14.09 * 0.04 *
Boundary AMP 99.95 * -14.55 0.40
FCI ln(Indirect/Direct) -0.16 * 0.28 * 0.00 *
FCI IFI -0.68 * 1.43 * 0.00 *
FCI ln(AGG) -0.24 * 0.31 * 0.00 *
FCI HMG 0.17 0.07 * 0.05
FCI AMP 0.22 * 0.81 * 0.00 *
ln(Indirect/Direct) IFI -1.74 * 4.92 * 0.00 *
ln(Indirect/Direct) ln(AGG) -0.21 * 1.07 * 0.00 *
ln(Indirect/Direct) HMG 0.64 0.43 * 0.00 *
ln(Indirect/Direct) AMP 1.36 * 2.73 * 0.00 *
IFI ln(AGG) 0.31 * 0.22 * 0.00 *
IFI HMG 0.47 * 0.09 * 0.00 *
IFI AMP 0.64 * 0.52 * 0.00 *
ln(AGG) HMG 0.91 * 0.36 * 0.00 *
ln(AGG) AMP 1.51 * 2.37 * 0.00 *
HMG AMP 2.98 * 0.45 0.08

* indicates significant at α = 0.05

33



Table 5
Principle components factor analysis.

Variable Factor 1 Factor 2 Uniqueness

ln(TST ) 0.84 0.53 0.01
ln(TSS) 0.61 0.28 0.55
Boundary -0.09 0.99 0.01
FCI 0.95 -0.04 0.09
ln(Indirect/Direct) 0.96 -0.02 0.07
IFI 0.98 -0.09 0.04
ln(AGG) 1.00 -0.07 0.01
HMG 0.34 -0.18 0.85
AMP 0.91 -0.01 0.17

Loading Sums of Squares 5.81 1.40
Proportion of Variance 0.65 0.16
Cumulative Variance 0.65 0.80
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Fig. 1. Eleven compartment model of phosphorus flux in Lake Sidney Lanier, Geor-
gia, USA.
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Fig. 2. Example of eleven successful model outputs for (a) epilimnion soluble reactive
phosphorus, (b) phytoplankton, and (c) larval–juvenile fish. Dashed lines and square
markers represent the constraints for the behavior definitions.
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Fig. 3. Sample distributions of nine Network Environ Analysis indicators in plausible
parameterizations of the Lake Lanier phosphorus model from simulations with 500,
1000, and 5000 trials. The trials generated 14, 18, and 90 plausible model param-
eterizations respectfully. The indicators are (a) Total System Throughflow (TST ),
(b) Total System Storage (TSS), (c) Total Boundary Input (Boundary), (d) Finn
cycling index (FCI), (e) ratio of indirect-to-direct flows (Indirect/Direct), (f) indi-
rect flow index (IFI), (g) network aggradation (AGG), (h) network homogenization
(HMG), and (i) network amplification (AMP ).
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Fig. 4. Pairwise scatter plots of nine Network Environ Analysis indicators of ecosys-
tem organization in 90 plausible parameterizations of the Lake Lanier phosphorus
model. Scatter plots and ordinary least-squares regression lines are plotted above
the principle diagonal and corresponding Pearson correlation coefficients are posi-
tioned below. Notice that we transformed TST , TSS, Indirect/Direct (symbolized
here as I/D), and AGG by the natural logarithm.

38



0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0

.2
0

.0
0

.2
0

.4
0

.6
0
.8

1
.0

ln(TST)

ln(TSS)

Boundary

FCI
ln(Indirect/Direct)

IFI
ln(AGG)

HMG

AMP

F
a

c
to

r 
2

Factor 1
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