
Solutions for Laboratory 3
Solving Continuous Time Models:

Single State Variable Models—Exponential Growth

Bio 535, Fall 2011

Introduction

The primary objective of this laboratory was to build your experience with implementing,
running, and exploring single state variable models. We used numerical approximation tech-
niques to approximate the exact integral solution of continuous time models of exponential
and logistic growth. We also found chaotic behavior in the Ricker model, a discrete time ana-
logue of the logistic model. In the course of this laboratory we developed our R programming
skills and learned techniques for exploring the behavior of simulation models.

Apart of this laboratory was (1) to read and understand someone else’s R scripts, (2)
modify an existing script, and then (3) to write your own. All three steps are good practice
for real world quantitative and computational science. Reading and interpreting existing
programs is useful not only to understand and evaluate someone else’s science, but it is also
a good way to learn how to program. Success in modifying a program provides evidence that
you understand how it works. Finally, constructing your own programs to solve a new task
requires a deeper mastery of the concepts.

Now that you have some experience, we can discuss both the modeling results and provide
some programming tips and tricks in R . To further facilitate your learning, I have included
a copy of most of my R scripts in the Appendices.

Task 3.1: Discrete Time Model Projections

Task 3.1.1

For this task, you were to program the solutions to the discrete time exponential growth
model. This equation is

Nt = λtN0.

The code for my solution is in Appendix . In this script, I show how to solve this problem
using both a for-loop and by vectorizing the problem.
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Figure 1: Solution to discrete time model showing the effects of changing (a) different growth
rates and (b) different initial conditions.

Task 3.1.2

This task builds on the previous by having you investigate the effects of changing the pa-
rameter values and the initial conditions. This is a form of sensitivity analysis, which is a
technique to investigate the dynamic behavior of a model and how the model parameters
influence it. Here we performed a one-at-a-time (OAT) sensitivity analysis. The resultant
behaviors indicate that λ changes how fast the population grows (λ > 1) or declines (λ < 1)
and how the initial condition influences the outcome (Figure 1).

Task 3.2: Diagram the model

When we diagram a model, using any visual vocabulary, we want to help ourselves and the
reader understand the system and how we have abstracted it. A good diagram will also hint
at or explain the structure of the quantitative model.

Figure 2 is a diagram for the exponential growth population model using the Forrester
diagramming symbols. Notice that there is one representation for each part of the model.
For example, each state variable and parameter is represented only once. Information arrows
shows when (but not how) elements relate to specific processes.

If we rewrite the exponential growth model as follows, it may be easier to see its corre-
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Figure 2: Forrester diagram of the exponential growth model.

spondence to the diagram.

dN

dt
= rN (1)

= (b− d)N (2)

= bN︸︷︷︸
Births

− dN︸︷︷︸
Deaths

(3)

Now the input–output structure of the model is more obvious. Births add to the popula-
tion and Deaths subtract from the population. It is also clear that the model assumes that
births and deaths are effected identically by the population density.

Task 3.3: Population projections

For this task, you used the exact integral solution of the exponential growth model (Nt =
N0e

rt) to project the future size of the population. You also used a one-at-a-time sensitivity
analysis to determine the effect of changing the two parameters in this model (No and r) on
the population projections. Figure 3 illustrates example solutions.

Task 3.4: Numerical approximations

In this task you were to compare the exact solution of the exponential growth model with
numerical approximations using the Euler and lsoda methods. For the Euler method, we
used three values of ∆t = 1, 0.1, 0.01. Figure 4 shows these comparisons.

As ∆t decreases the numerical approximation becomes more accurate. This is evident in
both the plot of the solutions (Figure 4) and in the estimated RMSEP (Table 1).

It is interesting to note that these errors would increase if we increased the time span or
our simulation. This is in part because we are working with a monotonically increasing func-
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Figure 3: Effect of varying r on the exact solutions of the exponential model. Left panel
shows when N0 = 5 and right panel shows when N0 = 100

Table 1: Error between the analytical solution and three Euler method numerical approxi-
mations of the exponential growth model as well as the lsoda calculation

dt RMSEP

1 9294.745
0.1 1193.684
0.01 122.6739
lsoda 0.0228

tion. Numerical error becomes more interesting when we are working with non-monotonic
functions like logistic growth. Thus, the true utility of lsoda is not realized in this exercise.
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Figure 4: Analytical, Euler, and lsoda method numerical approximations of the exponential
growth model.

Appendix: R Scripts

Discrete Time Solution

This script shows two ways of solving the discrete time problem. One uses a for-loop, the
other vectorizes the problem. I then use the sapply command to neatly apply the growth
function to different values of λ or No. Alternatively, you could have used another for-loop
(as shown).

# Difference Equation

# Exponential Growth

# Borrett

# Sept 13, 2011

# BIOL534, Lab 3, Task 1

# ----------------------

# parameters

times=seq(0,25,by=0.5) # time span for solution

lambda = 1.1 # geometric growth rate

N0 = 5 # initial population size

# --- Two Alternative Solutions ---

# Solution 1: Vectorized

N=N0*lambda^times
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plot(times,N)

# Solution 2: For-Loop

N2=0 # neet to initialize the populationvector

for(i in times){

N2[i+1] = N0*lambda^i

}

plot(times,N2)

# ---------------------------

##############

# Task 3.1.1

##############

N0 = 20 # initial condiion

lambda = c(0,0.5,1,1.5,2) # set of growth rates

times=seq(0,25,by=0.5) # time span

#

# using sapply for solutions

N2 = sapply(lambda, function(lambda1) N0*lambda1^times)

# you could alternatively use a for-loop to solve this problem

N2a = matrix(rep(0,length(times)*length(lambda)),

nrow=length(times)) # intialize population container

#

for(i in 1:length(lambda)){

N2a[,i]=N0*lambda[i]^times

}

##############

# Task 3.1.2

##############

N0 = c(1,10,50) # initial population densities

lambda = 1.25 # discrete growth rate

times=seq(0,25,by=0.5) # solution time

#

# using sapply function for solutions

N3 = sapply(N0, function(N0) N0*lambda^times)

# -- FIGURE --

fn="../figures/fig-t31.pdf" # file name

pdf(fn, height=4.5,width=7) # opens PDF file to write figure

opar <- par(las=1,

mfrow=c(1,2)) # create a figure with two plots

# (1 row, 2 columns)

# - first plot

matplot(times,N2,

ylim=c(0,200),
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type="l",lty=5:1,lwd=2,

main="Changing Growth Rate",

ylab="Population Size (N)",

xlab="Time"

)

mtext("(a)",side=3,line=-1,adj=0.01) # add panel label

legend("topright",legend=c("0","0.5","1","1.5","2"),

cex=0.75, # changes legend text size

col=1:5, # changes plot colors (by number)

lty=5:1, # sets line type

lwd=2,

bty="n") # turns off legend box

# - second plot

matplot(times,N3,

ylim=c(0,200),type="l",

lty=3:1,lwd=2,

main="Alternative Initial Values",

ylab="Population Size (N)",

xlab="Time"

)

mtext("(b)",side=3,line=-1,adj=0.01)

legend("bottomright",

legend=c("1","10","50"),

cex=0.75, # change text size

lty=3:1,

col=1:3,

lwd=2,

bty="n") # turns off legend box

#

rm(opar)

dev.off() # close PDF

cmd <- paste("open",fn) # create a system command to open the figure

system(cmd) # send the command to operating system (Mac only)

Analytical Solution to the Exponential Population Model: A

Here is an initial R script that you could use to solve the problem.

# Solving Continuous Time Equations

# Biol534, Lab 3, Task 3.3

# Stuart Borrett

# Sept. 9, 2010

# ----------------------------------

# model parameters

No = 100; # initial population size

t = 0:100; # time span of evaluation
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N=rep(0,101) # initialize the population size vector

line.type = 1 # inital line type

for(r in c(-0.1,0,0.1,0.5)){

N=No*exp(r*t); # analytical solution of the exponential growth model

if(r==-0.1){

plot(t,N,type="l",lty=line.type, lwd=2,

ylim=c(0,1000))

} else {

points(t,N,type="l",lty=line.type, lwd = 2)

}

line.type=line.type+1; # incremental counter to change the line type

}

# add legend

legend("topright",

legend = c("r = -0.1", "r = 0", "r = 0.1", "r = 0.5"),

col="black",

lwd = 2, lty = c(1:4),

bty="n",

)

Analytical Solution to the Exponential Population Model: B

Here is a fancier R script that performs all of the required analysis at once and creates a
PDF figure.

# Solving Continuous Time Equations

# Biol534, Lab 3, Task 3.3

# Stuart Borrett

# Sept. 9, 2010

# ----------------------------------

# model parameters

No=c(5,100); # inital population size

r = c(-0.1, 0, 0.1, 0.5); # intrinsic growth rate

t = 0:100; # time span of evaluation

# model setup / program parameters

N=rep(0,101) # initialize the population size vector

# start creating pdf of plot

fn <- "../figures/t33b.pdf"

pdf(file=fn, height=3,width=7) # open the PDF file

opar <- par(las=1,mfcol=c(1,2),

mar=c(4,4,1,1),oma=c(1,1,1,1)) # change plot parameters
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# model projection loops

for(i in 1:2){ # vary inital population size

for(j in 1:4){ # vary intrinsic growth rate

N=No[i]*exp(r[j]*t); # analytical solution of the exponential growth model

if(r[j]==-0.1){

plot(t,N,type="l",lty=j, lwd=2,

ylim=c(0,500))

} else {

points(t,N,type="l",lty=j, lwd = 2)

}

}

}

# add a legend to the plot

legend("topright",

legend = c("r = -0.1", "r = 0", "r = 0.1", "r = 0.5"),

col="black",

lwd = 2, lty = c(1:4),

bty="n",

)

dev.off() # close the PDF file

rm(opar)

# on a mac, the next line will open the PDF created

cmd <- paste("open",fn)

system(cmd)

Comparing Numerical Approximations

Run File

# exponential growth - run file

# Borrett 13 Sept 2011

# - Solution to Lab 4, Task 4.4

# deSolve version

# ------------------------------

# install required library

library(deSolve)

# load model

source("expgrowth-model.r")
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# set model parameters (using list data type)

parameters <- c(b = 0.5, # specific birth rate

d = 0.4); # specific death rate

state <- c(N = 5) # initial state

times <- seq(0,100, by=1); # time vector

## ----------------------------------------------

## NUMERICAL APPROXIMATIONS

out=list() # make out a list (initialize variable)

dt=c(1,0.1,0.01) # integration steps

#

## EULER SOLUTIONS -- numerical approximations

for(i in 1:3){ # solve model with different time steps.

out[[i]] <- ode(y=state,

times=times,

func=expgrowth,

parms=parameters,

method="euler",hini=dt[i])

}

## LSODA SOLUTIONS -- numerical approximations

out.lsoda <- ode(y=state,times=times, func=expgrowth, parms=parameters) # integrate the model using lsoda

## Find exact solution

Na <- as.list(state)$N[1] * exp( (as.list(parameters)$b-as.list(parameters)$d)*times);

## Calculate Root Mean Square Error for each solution

rmsep=list()

for(i in 1:4){

if(i <4){

rmsep[[i]] <- sqrt( sum( (Na - out[[i]][,2] )^2)/length(Na) ); # Euler errors

} else {

rmsep[[i]] <- sqrt( sum( (Na - out.lsoda[,2])^2)/length(Na)); # lsoda error

}

}

# -- PLOT -- #

fn <- "../figures/t34-compare.pdf"

pdf(fn,height=5,width=6)

opar <- par(las=1,mar=c(4,4,1,1),oma=c(1,1,1,1) )

#

plot(out[[1]])

#

points(out[[2]],pch=21,type="b",col="purple")

points(out[[3]],pch=22,type="b",col="orange")

points(out.lsoda,pch=23,type="b",col="red")

points(times,Na,lty = 2, col="blue",pch=4)
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mtext("Population Size (N)",side=2,line=3,las=3)

#

legend("topleft",pch=c(NA,21,22,23,4),lwd=1,legend=c("dt = 1","dt = 0.1","dt = 0.01", "lsoda", "exact"),

col=c("black","purple","orange","red","blue"),

bty="n")

#

dev.off() # close PDF file

cmd <- paste("open",fn)

system(cmd)

Model File

# exponential growth - model

# Borrett, 20 Oct 2010

# deSove version

# -----------------------------

expgrowth=function(t, state, parameters){

with(as.list(c(state,parameters)), {

# auxiliary parmeters

r = b - d;

# rate of change

dN = r*N;

list(c(dN))

}) # end with(as.list ...

}
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