
Solutions for Laboratory 1

Practical Programming

Biol 535

In this document I provide my initial solutions for the Practical Programming assignment that
was part of the Introduction to R Laboratory. I should emphasize that there are many correct ways
to solve these problems. These are just examples.

Problem 1

The first problem focused on using if–then statements. One solution follows.

> x.values <- seq(-2,2,by=0.1)

> n <- length(x.values)

> y.values <- rep(0,n)

> # action

> for(i in 1:n){

+ if(x.values[i] <= 0){ # first decision point

+ y.values[i] <- -x.values[i]^3

+ } else {

+ if (x.values[i] <=1){ # second decision point

+ y.values[i] = x.values[i]^2

+ } else { # third decision point -- everything else

+ y.values[i] = sqrt(x.values[i])

+ }

+ }

+ }

> show(y.values)

[1] 8.000000 6.859000 5.832000 4.913000 4.096000 3.375000 2.744000 2.197000

[9] 1.728000 1.331000 1.000000 0.729000 0.512000 0.343000 0.216000 0.125000

[17] 0.064000 0.027000 0.008000 0.001000 0.000000 0.010000 0.040000 0.090000

[25] 0.160000 0.250000 0.360000 0.490000 0.640000 0.810000 1.000000 1.048809

[33] 1.095445 1.140175 1.183216 1.224745 1.264911 1.303840 1.341641 1.378405

[41] 1.414214

> pdf(file="myplot.pdf",height=4,width=5) # opens PDF file

> plot(x.values,y.values,type="b",col="blue") # writes the plot to the PDF file

> dev.off() # closes the PDF file

null device

1

The last command line generates figure 1.

1

Fundamentals of Ecological Modeling

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−2 −1 0 1 2

0
2

4
6

8

x.values

y.
va
lu
es

Figure 1: Plot of y-values with respect to x-values for problem 1.

Problem 2

In this problem you were asked to use a for loop to solve

h(x, n) = 1 + x+ x

2 + . . .+ x

n (1)

=
nX

i=0

x

n (2)

My solution was

> # Input: define parameter values

> x = 0.3

> n = 55

> h = 0 # initialize variable

> # Action

> for(i in 0:n){

+ h = h + x^i

+ # show(c(i,h))

+ }

> show(h)

[1] 1.428571

2

Fundamentals of Ecological Modeling

The technique I used here was to keep updating the value of h. Each time through the loop I
changed the value of h, using the old value of h. This is a common programming strategy.

Problem 3

In this problem we solve the exact solution to equation 2 when x = 0.3 and n = 55. The exact
solution of the series is given by a known identity.

> h.exact = (1-x^(n+1))/(1-x)

> show(h.exact)

[1] 1.428571

> # test if h == h.exact

> h == h.exact

[1] FALSE

Notice that when we test to see if the solution from our for-loop calculation is equal to the value
from our exact solution the answer is false. Do they look false? Can you explain what is happening
here?

Problem 4

This problem required you to solve equation 2 using a while loop. The programming trick here is
to define a counter variable that increments by one each time you pass through the while-loop.

> # -- define parameters

> x = 6.6

> n = 8

> i=0 # initialize counter

> h=0 # inital value of h

> # -- while loop

> while(i <=n){

+ h = h + x^i

+ i = i+1 # increment counter

+ }

> show(h)

[1] 4243336

Problem 6

Here you were to find the geometric mean for a vector x. Recall that the geometric mean is defined
as (

Qn
i=1 xi)

1/n. As x was not specified, you could have used any vector. I used x = 1 : 100, but a
good starting point would have been to use a vector for which you could calculate the answer by
hand to check that your program was working.

My program below also finds the solution without a for-loop.

3

Fundamentals of Ecological Modeling

> x = 1:100

> n = length(x)

> # geometric mean

> gm1 = prod(x^(1/n))

> show(gm1)

[1] 37.99269

> gm2=1

> for(i in x){ #walk through values of x

+ gm2 = gm2 *(i)^(1/n)

+ }

> show(gm2)

[1] 37.99269

The next challenge was to calculate the harmonic mean (
Pn

i=1 1/xi)
�1. A solution for this

follows.

> # Harmonic Mean

> hm1 = (sum(1/x)*1/n)^-1

> hm2 = 0

> for(i in x){

+ hm2 = hm2 + 1/x[i] * 1/n

+ }

> hm2 = 1/hm2

> show(hm2)

[1] 19.27756

The arithmetic mean is

> mean(x)

[1] 50.5

As expected, the arithmetic mean is greater than or equal to the geometric mean, which is in turn
greater than or equal to the harmonic mean.

> show(c(mean(x),gm2, hm2))

[1] 50.50000 37.99269 19.27756

> (mean(x) >= gm2) && (gm2 >= hm2)

[1] TRUE

Checking the expected relationships is a good way to verify that your programs are working cor-
rectly.

4

Fundamentals of Ecological Modeling

Problem 7

This problem was to find the sum of every third element of a vector.

> x = 1:100

> x.sum=0

> x.vec=c()

> for(i in x){

+ # using modulo math concept.

+ if(i%%3 == 0){

+ x.sum = x.sum + x[i]

+ x.vec=c(x.vec, x[i])

+ }

+ }

> show(x.sum)

[1] 1683

The %% operator returns the modulo or remainder of the division of i by 3. If i is perfectly
divisable by 3, then the remainder is 0. This solution uses a math concept you may not have seen
before, but illustrates how expanding your knowledge of math may help you solve some of the
problems. One of the example problems I gave you used this concept. You can search for help in
R on the operator by typing

?'%%'

An alternative solution suggested by one of your colleagues that does not use a for-loop would
be to do the following.

> j=seq(3,length(x),by=3)

> sum(x[j])

[1] 1683

Problem 9a

The problem was to create a flow chart for the program provided. The solution is shown in Table 1.

Problem 10

> # given vector x, find the minimum values

> n <- 1000

> x <- rnorm(n) # creates vector with 1000 elements drawn from normal distribution

> x.min <- x[1]

> #

> for(i in 2:n){

+ if(x[i]<x.min){x.min = x[i]}

+ }

5

Fundamentals of Ecological Modeling

Table 1: Flow chart for program ‘threeplus1array.r’.

Line x i Comments

1 3 #N/A
2 3 1 i is set to 1
3 3 1 x is written to command window
4 3 1 (x[i]%%2 ==0) is false so go to line 7
7 3 10 1 x[2] is set to 10
8 3 10 1 end of else
9 3 10 1 end of for
2 3 10 2 i is set to 2
3 3 10 2 x is written to the window
4 3 10 2 (x[i]%%2 ==0) is true so go to line 5
5 3 10 5 2 x[3] is set to 5, go to line 8
6 3 10 5 2 end of if
9 3 10 5 2 end of for
2 3 10 5 3 i is set to 3
3 3 10 5 3 x is written to the window
4 3 10 5 3 (x[i]%%2 ==0) is false so go to line 7
7 3 10 5 16 3 x[4] is set to 16
8 3 10 5 16 3 end of else
9 3 10 5 16 3 end of for

Domeig Function

The last problem was:

Write a function “domeig” that takes as input a single vector and returns a list with
components “average” (mean of the values of in the vector) and “variance” (the variance
of the values in the vector). [DMB]

Lets first define the function.

> domeig <- function(x){

+ m <- mean(x)

+ v <- var(x)

+ y=list(mean=m,variance=v)

+ return(y)

+ }

Given this function, we can now use it.

> x <- rnorm(8)

> domeig(x)

$mean

[1] -0.1757752

$variance

[1] 1.104

6

