

Can you find the problem in this code?	
4. While loop:	It generates the correct answer, for the wrong reason
> x=0.3 > i=seq(55) > h = 0	
> while(x > h) + {h <- 1+(sum(h+x^i))} > h #display sum of function [1] 1.428571	
> x=6.6 > i=seq(8) > h = 0	Mixing a loop and a vectorized solution
> while(x > h) + {h <- sum(h+x^i)} > h #display sum of function [1] 4243335	

Exponential Population Growth

Discrete Time – Update Rule

$$\begin{split} X(t+\Delta t) &= X(t) + X\Delta t - Y\Delta t \\ X(t+\Delta t) - X(t) &= (X-Y)\Delta t \\ \frac{X(t+\Delta t) - X(t)}{\Delta t} &= X-Y \end{split} \label{eq:constraint} \begin{array}{c} \text{Can use } t \\ \text{fo predict} \\ \text{population} \end{array}$$

Can use this equation to predict future population size

Continuous Time – Differential Equation

$$\frac{dN}{dt} = rN$$

Rate of Change

How do we use this to predict future population growth?

Two Approaches

Analytical Solution – Exact

$$\frac{dN}{dt} = rN \xrightarrow{\text{Integrate}} N_t = N_0 e^{rt}$$

Problem: many functions cannot be integrated.

Solution Numerical Approximation Algorithms

- Euler
- Revised Euler
- Runge-Kutta 2, 4
- Isoda

Reading from Shiflet and Shiflet

Estimating Error

If we know the exact solution (Na), we can compare the numerical approximation (Np) to it.

$$RMSEP = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(Np_i - Na_i)^2}$$

Numerical Approximation: Isoda

- Industrial strength solver
- Uses a look forward and look backward approach
- Variable time step

Tasks

- 3.1 Discrete time model projections
- 3.2 Forrester type diagram of continuous time model
- 3.3 Continuous time population projections
 - use exact solution
- 3.4 Numerical approximation: compare accuracy of two techniques
 - Euler
 - lsoda (deSolve) package

Tasks

- 3.1 Discrete time model projections
- 3.2 Forrester type diagram of continuous time model
- 3.3 Continuous time population projections
 - use exact solution
- 3.4 Numerical approximation: compare accuracy of two techniques
 - Euler
 - lsoda (deSolve) package