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Bio534: Fundamentals of Ecological Modeling

1 Introduction

In this lesson, I explicitly introduce the notion of control functions and illus-
trate how they are used in ecological modeling. We will discuss a number of
example control functions along with their applications and limitations. The
assigned background reading for this lecture is Chapter 3 Bolker (2008).

At the end of this lesson, you should be able to:

1. Distinguish between process determinants and controls ;

2. Identify the difference between donor and recipient determinants and
controls;

3. Construct plots to evaluate how a control function operates;

4. Identify and characterize selected illustrative control functions;

5. Recognize the Monod Function (aka Michaelis-Mention) function, pro-
vide examples of its use in ecological modeling, and recall the advantages
and disadvantages of this function.

6. Explain and use Wiegert’s trick to make the logistic only operate on
ingestion (births);

7. Utilize a consumer–resource ecological framework common in ecosystem
ecology; and

8. Describe alternative ways of combining control functions and explain the
rational for each.

In our previous discussions, we have approached the model construction
using a population ecology framework in which the state variables were
population abundances or densities (i.e., number of individuals per area). To-
day, we will use an ecosystem perspective in which the state variables
represent the collective biomass of the group or compartment. To reinforce
this distinction, we will represent the state variable as X in today’s equations.

Conceptually, we could simply convert from one perspective to the other
by multiplying the number of individuals N by the average biomass of an in-
dividual. However, we also start to consider different processes. Instead of the
input process being Births and the loss process being Deaths, we substitute
processes like Ingestion and Natural Mortality. Despite the differences in
the notation and interpretation, there is a strong similarity in the underlying
mathematics.

2 Determinants vs. Controls

The structure of a system interacts with the function to generate the behavior
of the system. As previously discussed, any change in the state variable(s) X
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(i.e., population size, concentration) such that Xt+1 6= Xt can be considered a
dynamic change of state or behavior.

Conceptually, the magnitude of change in a state variable is determined
(determine = to set bounds or limits to; to limit in extent) by characteristics
internal to the components of a model. In the case of biotic components, it is
the genetic composition of the organism that sets these bounds. The maximum
rate of growth under optimal conditions and resources (µmax) is one such limit.

The changes produced by system and model behavior are kept within
bounds by controls. These control functions take many forms, some are ex-
ternal (environmental limitations) and some are internal (i.e., intraspecific
competition). We will examine such functional forms in detail.

One of the challenges of quantitative modeling is choosing the best func-
tional forms to represent specific processes. Alternative functional forms make
different assumptions about the ways the biological process works, and they
each have strengths and weaknesses. In general, we use knowledge and data
about the particular system to guide our selection of functions. Many mod-
eling texts introduce a “Beastiary” of mathematical functions that might be
useful for ecological modeling. For example, see Chapter 5 in Haefner (2005),
Chapter 3 in Bolker (2008), and Chapter 3 in Jørgensen and Bendoricchio
(2001).

2.1 Donor–Determined, Donor–Controlled

Some ecological processes can be modeled as both determined and controlled
by the donor compartment including respiration, non-predatory mortality, ex-
cretion. When using this formulation, we are assuming that no other entity
is involved in the process, such as the logistic model of population growth.
Figure 1 shows a general example of this.

X1

F10

Donor Determined, Donor-Controlled

Figure 1: Examples of donor determined flows. In this figure, F10 is the flow
or process, δ1 is a specific process rate, and X1 is the state variable.

2.2 Recipient–Determined

Processes such as ingestion or predation are often modeled as recipient deter-
mined because it is the recipient’s basic biology determining what can occur.
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X1 X2

F12

Recipient Determined: Uncontrolled

X1 X2

F12

Recipient Determined:   Recipient Controlled — Density Dependence — Space

X1 X2

F12

Recipient Determined:  Donor  Controlled

Figure 2: Examples of recipient determined flows. In this figure Xi i = 1, 2
are the state variables, Fij is the process or flow, τ12 is a specific rate for the
process, and f(Xi) is a process control that is a function of Xi.

Figure 2 shows three examples of recipient determined flows with different
types of controls.
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3 Example Control Functions

In this section, I introduce a number of example formulations of process or
flow controls. These controls will be added to the input or output process
(flow) equations.

3.1 External Conditions or Resources

There are multiple functions for controlling a process by external conditions
or resources such as temperature or light availability. We will discuss some of
them in a different lecture. This simply serves as a place-holder for now. If you
are curious, (Jørgensen and Bendoricchio, 2001) describes several functions for
temperature and light in Chapter 3, and (Atanasova et al., 2006) presents a
summary of useful functions.

3.2 Resource Controls

3.2.1 Michaelis-Menton or Monod

The Michaelis-Menton or Monod function is one of the more commonly used
functions in ecological modeling. It was originally used by chemists to model
reaction rate kinetics, but it is quite useful for many purposes. For this exam-
ple, assume that there is some resources with concentration X1, which could
be a constant or a variable within our system, that might limit or control the
growth of our system variable of interest.

f(X1) = kmax
X1

(X1 + ks)

where ks is the 1/2 saturation con-
stant. Notice that the curves are
asymptotically growing to the kmax =
1 value.
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3.2.2 Hyperbolic form of the Michaelis–Menton Half Saturation

f(X1) =

[
1− ks

ks+X1

]
Where ks is the 1/2 saturation con-
stant
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3.2.3 Refuge form of the Hyperbolic Michaelis–Menton

f(X1) =

[
1− α12

X1

]
where α12 is a refuge concentration
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Assumptions

1. The maximum rate (kmax = 1.0) is not reached until resources are in-
finitely available. This is more problematic if we multiplicatively combine
multiple control functions (see Section 5)

2. Limited to a convex upward hyperbolic curve, which may not match
data.

3. If you use the refuge form, you cannot specify a half-saturation constant,
but if you use the half-saturation form you cannot specify a refuge.

3.3 Logistic Function

Recall the original logistic equation that we discussed last meeting. This is an
example of donor determined and donor controlled function. Gotelli (2008)
presented the equation in standard form using population ecology notation as

dN

dt
= rN ∗ f(N) (1)

f(N) =

(
1− N

K

)
(2)

where N is the population size, r = b− d is the intrinsic growth rate, and K
is the carrying capacity.

This equation makes most of the same assumptions as the exponential
growth population equation as well as two others:

• constant carrying capacity, and

• linear density dependence.

For the ecosystem perspective, we can represent this equation as:

Ẋ2 =
dX2

dt
= (τ12 − δ2)X2 ∗ f(X2) (3)

f(X2) =

(
1− X2

K2

)
. (4)

In equation (4), X2 is the state variable, τ12 is the ingestion or uptake rate,
δ2 is the specific loss rate, and K2 is the carrying capacity. Ẋ2 is a convenient
engineering notation that stands for dX2

dt
. I have also added subscripts to the

parameters that refer to the variables to which they are related. For example,
τ12 is the rate at which X2 ingests material from a resource, which we indicate
as subscript 1.

Notice that equations (2) and (4) are mathematically identical, we have
just changed symbols and interpreted them slightly differently.
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3.3.1 Wiegert’s Problem and Trick for the Logistic Function

One of the assumptions of the logistic function is that the density dependent
control operates simultaneously and equally on both births and deaths – or
ingestion and loss rates in the ecosystem perspective. This may or may not
be true for the specific system of interest. Further, there seems to be another
more serious problem.

R.G. Wiegert, who was a pioneer of ecological modeling and a professor at
the University of Georgia, suggested that there is a biological problem with
the way that equation (4) is written. Given equation (4), it seems logical to
write out the process rates as

INGESTION = τ12

(
1− X2

K2

)
, and (5)

LOSS = δ2

(
1− X2

K2

)
. (6)

This satisfies the mathematical equation (4), but it violates the biological con-
straint that at equilibrium Ẋ2/X2 = 0 both ingestion and the loss processes
must be non-negative (≥ 0), even if the net growth rate is negative.

We can start to mathematically address this issue by rearranging the equa-
tions. First, we distribute and rearrange the terms on the RHS of equation
(4) as:

Ẋ2

X2

=

[
τ12

(
1− X2

K2

)]
︸ ︷︷ ︸

Input

−
[
δ2

(
1− X2

K2

)]
︸ ︷︷ ︸

Output

(7)

= τ12 − τ12
X2

K2

+ δ2
X2

K2

− δ2 (8)

= τ12 − (τ12 − δ2)
X2

K2

− δ2 (9)

= τ12

(
1−

(
1− δ2

τ12

)
X2

K2

)
− δ2 (10)

Now, let c =
(

1− δ2
τ12

)
and we can rewrite equation (4) as

Ẋ2

X2

= τ12

(
1− cX2

K2

)
− δ2 (11)

and then the process rates are

INGESTION = τ12

(
1− cX2

K2

)
, and (12)

LOSS = δ2 (13)

While this may seem like an overly complicated mathematical trick, we
will discover that it can be quite useful. To make this idea more concrete, we
will explore the details of Wiegert’s trick in laboratory.
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Egestion and Respiration With our example above we are beginning to
explicitly consider trophic processes. Our first process was ingestion, but as
Odum’s drawing in Figure 3 illustrates, not all ingested material is used by an
organism to produce new organism biomass. Some energy–matter is egested or
not used and another fraction of the input is lost through metabolic processes
like respiration.

Unassimilated material is typically modeled as a fraction of ingested ma-
terial that is loss from the donor but never enters the consumer. Thus, if
τ12 is the maximum specific ingestion rate, then τ12(1 − ε12) is the effective
assimilation rate where ε12 is the unassimilated fraction. What are the units
of ε12?

When we substitute this formulation of assimilation into equation (11) we
generate

Ẋ2

X2

= τ12(1− ε12)
(

1− cX2

K2

)
− δ2 (14)

Respiration may be modeled as a separate loss processes, and is typically
treated as an exponential function such that

respiration = ρ2 ∗X2. (15)

However, it is probably more realistic to model respiration as a function of
temperature. What mathematical formulation would you use? Why?

In equation (11) we are assuming that loss due to respiration is captured
in our specific loss term δ2.

3.3.2 Generalized Logistic (non-linear relationships, refuges)

With these modifications to the logistic control of population growth, lets now
add modifications including (1) adding a refuge α22, (2) making the function
capable of representing non-linear relationships, and (3) constraining the func-
tion to be positive using +.

f(X2) =

[
1− c ·

(
X2 − α22

K2 − α22

)b
+

]
+

c =

[
1− δ2

τ12(1− ε12)

]
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Figure 3: Odum’s diagrammatic model of energy flowing through an organism.
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In this formulation we have added (1) a refuge represented by α22, (2) the
exponent b, and (3) the + notation. The refuge operates as a threshold below
which density-dependent interference competition does not occur. b allows us
to consider alternative shapes of the relationship between f(X2) and X2. The
+ notation indicates that we are keeping the function or part of the function
positive. From a programming standpoint, we are using the maximum function

as max(0,
(
X2−α22

K2−α22

)b
). These modifications to the logistic address some of its

short comings.

4 General Problems with “off the shelf” con-

trol functions

There are three main categories of problems1:

• The functions seldom incorporate thresholds, mainly because they were
all developed and applied to ecological models of population growth and
energy flow at a time when closed form solutions to sets of differential
equations were the only practical means of manipulating such models.

• The functions usually commit the user to a single behavior of the control
function, e.g. the logistic assumes a linear change with respect to change
in density, the hyperbolic assumes a single convex upward asymptotic
curve once either the half-saturation constant of refuge is chosen.

• Adequate consideration has seldom been given to the need for separate
control functions to simulate the effects of resource limitation (exploita-
tive competition) versus the effects of limits imposed by some form of
scarcity of space (interference competition).

The control functions we have previously discussed in class try to address
these three issues.

1Wiegert 1999
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5 Combining Control Functions

Once we have established how a particular factor effect the maximum process
rate (µmax), the next step is to consider how to combine multiple factors. Here
we introduce three cases using the Michaelis–Menton 1/2 saturation function
as an example. Figure 4 illustrates the mathematical consequences of the
different combinations methods.

5.1 Essential

The first method of combining multiple resources is based on Liebigs Law of
the Minimum which states “under conditions of equal temperature and light,
the nutrient available in the smallest quantity relative to the requirement of
the plant will limit productivity” (as quoted by H.R. Pulliam). This approach
assumes that each resource is essential for growth. It is formulated as follows:

µ(R1, R2) = µmax ·min[f(R1), f(R2)] (16)

= µmax ·min

[
R1

R1 + ks1
,

R2

R2 + ks2

]
(17)

where R1 and R2 are two different factors (i.e., nutrient, temperature, etc.)
and ks1 and ks2 are the respective 1/2 saturation constants.

Resources required in this fashion have been called essential or comple-
mentary resources in the literature.

5.2 Independent

Another possible way of combing limiting nutrients assumes that the effect of
each resource is independent. Haefner (2005) refers to this case as multiplica-
tive. In this case, both limitations operate simultaneously and are therefore
multiplied together as shown in equation (18).

µ(R1, R2) = µmax ·
R1

R1 + ks1
· R2

R2 + ks2
(18)

The relative importance of the factors in determining the growth rate varies
with the abundance of each. What do you think the disadvantage of this
approach might be? Can you tell from Figure 4?

5.3 Substitutable

The final combination case we will discuss concerns completely substitutable
resources: one resource will work just as well the other. Both resources are
not required. H.R. Pulliam suggests that a good example of this is when a
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predator can consume two types of prey that might differ in nutritional value.
This combination is formulated as:

µ(R1, R2) = µmax ·
R1 + (v1/v2)R2

R1 +R2 + ks
(19)

Where v1 and v2 represent the size or nutritional contents of the prey types,
and ks is a half-saturation constant. In the illustration below we assumed that
v1 = v2. How would you expect the response surface to change when v1 6= v2?
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Figure 4: Result of combining two Michaelis–Menton functions assuming they
are (a) essential, (b) independent, and (c) substitutable
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6 Appendix

6.1 Monod

# Monod Function Example

# Borrett | Sept. 23, 2014

# ----------------------

rm(list = ls())

X1 = 0:100 # select arbitrary values of the resource

ks = c(1, 5, 10, 20, 40, 60) # selected 1/2 saturation values (same units as X1)

kmax = 1

fn <- "../figures/monod.pdf" # file name

pdf(file=fn ,height=3.7, width=3.7) # open PDF object

opar<-par(oma = c(0,0,0,0),

mar = c(4,5,1,1),

las = 1,

cex.lab = 1.2)

for (i in 1:length(ks)){

fx1 <- kmax * X1/(X1 + ks[i])

if (i ==1) {

plot(X1,fx1,

type = "l", lwd = 2, col = i,

xlab = "", ylab = "",

ylim = c(0,kmax))

mtext(bquote(f(X[1])), side = 2, line = 2.5, cex = 1.1)

mtext(bquote(X[1]), side = 1, line = 2,cex = 1.1)

} else {

points(X1, fx1,

type = "l", lwd = 2, col = i)

}

points(c(ks[i],ks[i]), c(-0.5, 0.5),

type = "l", lty = 2, col = "lightgray")

}

# -- Add Labels

points(c(-5, max(X1)), c(0.5, 0.5),

type = "l", lty = 2, col = "lightgray")

text(95, 0.5,

"ks", col = "lightgray")

dev.off() # close PDF object

# open plot (on MAC)
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cmd <- paste("open",fn)

system(cmd)

rm(opar)
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6.2 Combining Control Functions

# Modeling Resource Control

# S.R. Borrett

# 10 October 2006

#

# This script shows growth rate surfaces in response to three ways of

# combining the effect of multiple resources. It is based on class

# notes from H.R. Pulliam.

################################################################################

rm(list=ls())

R1 <- 0:40; # resource

R2 <- 0:40; # resource

k1 <- 4; # 1/2 saturation constant

k2 <- k1

mu_max <- 1; # maximum intrinsic growth rate of the species

# CASE 1: Liebig’s Law of the Minimum

f1 <- function(R1,R2) {mu_max * pmin((R1/(R1+k1)), (R2/(R2+k2)))}

z1 <- outer(R1, R2, f1)

z1[is.na(z1)] <- 0

# CASE 2: Independent Resources

f2 <- function(R1,R2) {mu_max * (R1/(R1+k1)) * (R2/(R2+k2))}

z2 <- outer(R1, R2, f2)

z2[is.na(z2)] <- 0

# CASE 3: Substiutable Resources

v1 = 1; # size or total nutritional content of R1

v2 = 1; # size or total nutritional content of R2

f3 <- function(R1,R2) {mu_max * (R1+R2*(v1/v2))/(R1+R2+k1)}

z3 <- outer(R1, R2, f3)

z3[is.na(z3)] <- 0

## PLOTS ##

opar<-par(mfcol=c(3,2),las=1,

oma=c(1,2,3,1),mar=c(2,2,2,1),cex.main=2,

cex.axis=1.2,cex.lab=1.5)

persp(R1, R2, z1, theta = -30, phi = 25, expand = 0.7, col = "lightblue",

ltheta = 120, lphi = 120, shade = 0.1, ticktype = "detailed",

xlab = "R1", ylab = "R2", zlab = " ", main="(a) Essential",

zlim=c(0,1),nticks=3)

mtext("growth rate",side=2,las=0,adj=0.75,line=1.5)

persp(R1, R2, z2, theta = -30, phi = 25, expand = 0.7, col = "lightblue",

ltheta = 120, lphi = 120, shade = 0.1, ticktype = "detailed",
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xlab = "R1", ylab = "R2", zlab = "",main="(b) Independent",

zlim=c(0,1),nticks=3)

mtext("growth rate",side=2,las=0,adj=0.75,line=1.5)

persp(R1, R2, z3, theta = -30, phi = 25, expand = 0.7, col = "lightblue",

ltheta = 120, lphi = 120, shade = 0.1, ticktype = "detailed",

xlab = "R1", ylab = "R2", zlab = "",main="(c) Substitutable",

zlim=c(0,1),nticks=3)

mtext("growth rate",side=2,las=0,adj=0.75,line=1.5)

opar<-par(mar=c(5,5,1,1))

contour(R1,R2,z1,method="edge",

levels=c(0.2,0.4,0.6,0.8,1),lwd=2,xlab=bquote(R[1]),

ylab=bquote(R[2]),cex=1.2)

mtext("Contour Plots",line=1,side=3,cex=1.2)

contour(R1,R2,z2,method="edge",

levels=c(0.2,0.4,0.6,0.8,1),lwd=2,xlab=bquote(R[1]),

ylab=bquote(R[2]),cex=1.2)

contour(R1,R2,z3,method="edge",

levels=c(0.2,0.4,0.6,0.8,1),lwd=2,xlab=bquote(R[1]),

ylab=bquote(R[2]),cex=1.2)

###################

#opar<-par(mfrow=c(2,3),las=1,oma=c(1,1,1,1),mar=c(0,2,1,0),cex.axis=0.25)

#persp(R1,R2,Z1,theta = -20, phi = 10, expand = 0.7, col = "lightblue")

#opar<-par(oma=c(2,4,4,2))

#persp(R1, R2, z1, theta = -30, phi = 15, expand = 0.7, col = "lightblue" ,

# ltheta = 120, lphi = 300, shade = 0.2, ticktype = "detailed",

# xlab = "R1", ylab = "R2", zlab = "growth rate",main="Essential",

# zlim=c(0,1),nticks=3) -> res
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