Practical Programming with R

Geeks and repetitive tasks Stuart Borrett
: b10l1534
time A
spent uns loses

script

v

wnites
script to *
automate
e, wins
gets e
annoyed

\
\
makes fun of geek's
complicated method

|
task size

manually

Bruno Olveira

http://nicercode.github.io/blog/2013-04-05-why-nice-code/

Why to write code

Review Lab 1

What were the most challenging Exercisese Why?e

Remaining Questionse

Compare your results to the posted solutions

http://people.uncw.edu/borretts/courses/bio534/labs/solutions/Bio
534-lab1-solutions.pdf

Practical Programming: Learning objectives
Students should be able to...

Organize computational projects

Identify and apply programming concepts

such as loops and branching

Recognize the computational savings of

vectorizing tasks when possible
Practice debugging

Create functions 1in R.

Organizing
Compvutational Projects

e Program Flow Control

e Neat Programming

e Practice

Q:c@

Organization of

Computational Projects

Problem: Many files, bits, and pieces

Question: How do we keep 1t organized?

Best Practices

Nobel’s Project Directory

plos.org create account m

OB
@ PLOS g%’fg%LATIONM Browse = For Authors = About Us Search Q
advanced search
& OPEN ACCESS 44,613 8 839 199
EDUCATION VIEWS CITATIONS SAVES SHARES

A Quick Guide to Organizing Computational Biology Projects

William Stafford Noble

Published: July 31, 2009 « DOI: 10.1371/journal.pcbi.1000424 e Featured in PLOS Collections

msms
Research
Notebook
doc data StC bin results
ms-analysis.html makefile patse-sqt.py notebook.html

ms-analysis.c ms-analysis /\

paper 2009-01-14 2009-01-15 2009-01-23

makefile runall runall

msms.tex summarize

msms.pdf /I\

yeast worm splitl split2 split3
README README

yeast.sqt worm.sqt
yeast.ms2 worm.ms2

Simplified Project Organization

bin
data
Project AeE

refs

results

Source code, programs, scripts

Any and all data for the project

Documents/presentations you
write for the project

Relevant papers

Analytical results, figures, tables,
and Project Notebook

Example: Throughflow Cenftrality

Directory Structure

SRR TR

Users/borre

2-20-221-131: t
tts/research/tcent

© O O [tcent — borretts@152-20-221-131:~/research/tcent

CEnEs pu

borretts@152-20-221-131: tcent $ 11

total 12288
grwxr=xr—x 57 borretts

drwxr—=xr—x 5 borretts
drwx—————-— 59 borretts
—rwWX—————= 1 borretts

grwxr-xr-x@ 5 borretts
drwxr-xr-x 136 borretts

borretts@152-20-221-131: tcent $

Project Notebook

staff
staff
staff
staff
staff
staff

1.9K Aug 26 2013 bin
170B Nov 21 2012 data
2.0K May 20 2013 doc
6.0M Aug 4 2011 eec.zip

170B Dec 23 2011 references

4.5K Aug 17 10:44 results

Throughflow Centrality

Laboratory Notebook

Stuart R. Borrett

Show files

2

Program Flow Control

£

2

Loops and Branching

By default, R reads scripts and executes them line by line.
— Replicates entering commands by hand at the command line

Ultrastructure Input

¥
Action

y
Ouvtput

By default, R reads scripts and executes them line by line.

— Replicates entering commands by hand at the command line

Create and Execute the Following Script
Example Script

Borrett, Aug. 2011

setwd("~/teaching/biol534.f11/PracticalProgramming/code") # change working
directory

INPUT - create variables

a = runif(100) # creates a vector of 100 numbers drawn from a uniform random
distribution between 0 and 1

b = rnorm(100) # creates a vector of 100 numbers drawn form a normal distribution
with mean 0 and standard deviation 1.

ACTION
c =a+b

OUTPUT
hist(a)

quartz() # creates new plot window on MAC; use win() on windows or x11() on
linux or mac

plot(a,b)

Branches — If-Then Statements

Sometimes we only want code to execute when certain conditions are met

if statement - if-else statement

Main
program
statements
Conditional Tvire THiia
block of 1fi i
commands

False False l

else

Continue i N
st v
program v

Condiﬁonql flow Control Haddock and Dunn 2011, Fig 7.3

Branching R Example

General Form Example

if(condition) { # program spuRs/resources/scripts/quad2.r
find the zeros of a2*x”2 + al*x + a@ = 0

some commands

clear the workspace
yelse{ rm{list=1s())

some other commands

1nput
}| a2 <- 1
al <=- 4
ad <- 5

calculate the discriminant
discrim -~ al”2 - 4xa2*al
calculate the roots depending on the value of the discriminant
if (discrim > @) {
roots < c{ (-al + sqrt(al”2 - 4%xa2%al))/(2%a2),
(-al - sqrt{al”2 - 4*a2#*a0))/(2*a2))

} else {
if (discrim == 0) {
roots < -al/(2%a2)
} else {
roots <- cf)
}
}
output

Jones, Maillardet, Robinson 2009 chowl roots)

Iteration by Loops

Sometimes we want to perform the same action multiple fimes

The for loop

program *
statements -

Next item

T EEE T]

Looping

block No more *

items?

Continue
main
program

The while loop

S while

False

True

L

Haddock and Dunn 2011, Fig 7.4

Example: Summing a Vector

General
Form

Example

for (var in seq) {
commands

}

Example: Summing a Vector
Borrett, Aug 2011
From Jones, Maillardet, and Robinson 2009, p33

x.list = seq(1,9, by=2)

sum. X @ # initialize sum.Xx

for (x in x.list){
sum.x = sum.X + X # incremental sum
cat("The current loop element is ",x, "\n")
cat("The cummulative total is ", sum.x, "\n")

Example: Pension

I program: spuRs/resources/scripts/pension.r
Forecast pension growth under compound interest

clear the workspace
rm(list=1s())

Inputs
r - 0.11 # Annual interest rate
term - 10 # Forecast duration (in years)
period -~ 1/12 # Time between payments (in years)
payments - 100 # Amount deposited each period
Calculations
n <- floor(term/period) # Number of payments
pension - @
for (i in 1:n) {
pension[i+1] - pension[i]*(1 + r#*period) + payments
}
time -~ (@:n)*period
Output

plot(time, pension)

Jones, Maillardet, Robinson 2009

Example: Exponential Pop Growth

[

~

w

o

~

oo

o

10

11

12

13

14

15

16

17

18

19

~
(=]

21

22

23

£

26

27

28

29

Iteration Example: Exponential Population Growth
Borrett, Aug 2011
Haefner equation 2.5

INPUTS

mx.time = 10 # number of time units to consider

N = rep(@,mx.time) # initialize population vector
NGO = 10 # initial population size

r=0.5 # per capita rate of population growth

ACTION

for (1 in 1:mx.time){ # note start at time 2
cot("index is"; 1; "\al)

if(i == 1){
N[i] = NO
cat("initial condition set")
}
N[i+1] = N[1i] + r*N[i] # main equation
}
OUTPUT

time.vec = seq(@,mx.time,by=1)

s plot(time.vec,N,

type - nbn ,
xlab = "time",
ylab = "population size (individuals)",

)

Program (3plus1)

program: spuRs/resouz

1 x<- 3

2 for (i 1n 1:3) f

3 show (x)

4 if (x %% 2 == 0) {
5 X X %2

6 } else {

4 x <- 3*%x + 1

8 }

9 }

10 show(x)

Jones, Maillardet, Robinson 2009

Charting Flow

Chart

Table 3.1 Charting the flow for program threexplusl.r
line x ¢ comments
1 3 ¢ not defined vet
2 3 1 sissettol
3 3 1 3 written to screen
4 3 1 (x %k 2 == 0) is FALSE so go to line 7
7 10 1 xissetto 10
8 10 1 end of else part
9 10 1 end of for loop, not finished so back to line 2
2 10 2 ¢issetto?2
3 10 2 10 written to screen
4 10 2 (x %% 2 == 0) is TRUE so go to line 5
5) 5 2 wxissettod
6 5 2 end ofif part, go to line 9
9 5 2 end of for loop. not finished so back to line 2
2 5 3 iissetto3
3 5 3 5 written to screen
4 5 3 (x %k 2 == 0) is FALSE so go to line 7
7 16 3 xissetto 16
8 16 3 end of else part
9 16 3 end of for loop. finished so continue to line 10
10 16 3 16 written to screen
This is exactly what the computer does when it executes a program: it keeps
track of its current position in the program and maintains a list of variables and
their values. Whatever line you are currently at, if you know all the variables
then you always know which line to go to next.

While Loops

When you don’t know how many times you need to iterate

Example B program: spuRs/resources/scripts/compound.r
Duration of a loan under compound interest

clear the workspace
rm{ Llist=1s())

Inputs

r - 0.11 # Annual interest rate

peried - 1/12 # Time between repayments (in years)
debt_initial <~ 1000 # Amount borrowed

repayments - 12 # Amount repaid each period

Calculations
time -~ 0
debt - debt_initial
) while (debt > @) {
time <~ time + period
debt - debt*(1 + r*period) - repayments
}

Output
cat('Loan will be repaid in', time, 'years\n')
Jones, Maillardet, Robinson 2009

Loops vs. Vectorizaiton

* Loops work

 Vectorized calculations are much faster.

Loop

‘ ptm = proc.time()
:'n = 100000
4S=0

8 for (i in 1:n){

6 S =S + 1A2

7 }

K

o proc.time() - ptm

> ptm = proc.time()
>

> n = 100000

>s =0

> for (1 in 1:n){

+ S = S 4+ 1A2

+ }

> S

[1] 3.333383e+14

>

> proc.time() - ptm
user system e)apsed
0.108 0.002 | 0.152

Vectorized

14

. sum((1:n)A2)

: ptm = proc.time()

proc.time() - ptm

> ptm =

[1] 3.333383e+14

proc.time()
> sum((1l:n)A2)

> proc.time() - pty

user
0.004

system
0.001

#lapsed
0.028

Functions

« Functions are like scripts, but they can be used to break
the actions info chunks

« Usually use a function for a task that will be repeated

General Form function.name=function(argumentl,argument2,...) {
command ;
command ;
command ;
return(value)
}
Examples mysquare=function(v,w) {
u=v-2+w"2;
return(u)
}

mysquare2=function(v,w) {
q=v~"2; r=w"2
return(list(v.squared=q,w.squared=r))

12

Neat Programming

£

3

Neat and well documented code
facilitates use and debugging

Good Programming Habits

Header

I program: spuRs/resources/scripts/compound.r

— Name Of Program # Duration of a loan under compound interest
— Name of Author # clear the workspace
- Date # Inputs
- 3 1 1 r 0.11 # Annual interest rate
FunCtlon ObJeCtlveS period 1/12 # Time between repayments (in years)
« INPUT debt_initial 1000 # Amount borrowed
()IJfFI?IJfF repayments 12 # Amount repaid each period
Calculations
time 0
. debt debt_initial
Variable Names uhile (debt > 0) {
5 0 0 time time + period
— Use descrlptlve or meamngful debt debt*(1 + rxperiod) - repayments
names when possible !
— Avoid using reserved names [Lo L time, e

exists() function]

Use comments to describe
analytical steps

Use blank lines to separate code
into distinct parts

Use indenting for loops and
branches

R Style Guide

https://google.github.10/styleguide/Rguide.xml

This is a set of useful code style guidelines.

Version Control

* Software that keeps track of file changes
— Usetul for software development, coding

— Useful for paper/presentation preparation

« Do you use a version numbering system in the file name (e.g.,
myfile v1.docx)?

« Software Examples: Git, Mecurial, CVS, Subversion

* More Info @ http://git-scm.com/book/en/Getting-
Started-About-Version-Control

* http://nicercode.github.10/git/

Practice

Complete Exercises {1, 2,3,4,0,7, 93} Jones et al. 2009

Write a function “domeig”

Takes as input a single vector and returns a list
with components “average” (mean of the values of
in the vector) and “variance” (the variance of the
values in the vector). [DMBI

