PREFACE

This group of papers represents as wide a range of the ecological literature as could be encompassed within a reasonably sized volume. Although it is compiled as a textbook supplement for the beginning student in ecology, certain papers are suitable for college students in beginning biology or general science and for high school students in advanced biology. For the graduate student and research ecologist it provides an opportunity to become reacquainted with the sources of their endeavors.

With few exceptions, all of these papers have been used in my course in general ecology at Oberlin College because of the tremendous potential inherent in exposure to the original literature. Although I have used them largely in synchrony with textbook declamations, their real value lies in the excitement and flavor, and the relating of the adventure, hard work, and creativity which is science. There is ample testimony that these savors are experienced and that scientific literature is comprehensible.

The criteria which guided the filtering out of few papers from the myriad for my own students have operated in meeting the exigencies imposed by publication. The prime criterion is a paper which has made a highly significant contribution; this is fairly
readily attested by the frequency of its citation in subsequent literature. In most instances, this standard also placed in the list most of the ecologists who have given direction to their field. Other papers were selected as exemplary of good scientific procedure (trenchant analysis, incisive logical argument, stimulating theoretical discourse) and others to achieve an indication of the range of ecological investigation.

Each paper has been abridged (indicated by an ellipse, . . .) and had literature citations omitted primarily to conserve space. There are recognized dangers here, not the least is that the reader may not be made fully aware of the dependence of a scientist on his predecessors and contemporaries.

Noble criteria notwithstanding, there is the hazard of autocracy in compiling a set of papers, perhaps more so for so diversified a field as ecology. No two ecologists would likely develop identical lists nor present them in the order used here. Most would concur in certain papers having classic status, but at that juncture divergence of considerable magnitude would begin. There is an historic and functional reasonableness to both the selections and order used but not such as to deny great flexibility in selecting papers to meet individual requirements.

Because one's perspectives are always circumscribed and his hindsight wanting, the utility of this volume can be increased in the future through criticism, charitable and otherwise, by its users. I will appreciate receiving that criticism.

Each of my teachers, students and colleagues (in person and through the literature) has contributed in some way to the development of this volume. None is singled out since each is completely absorbed from the final errors of commission and omission, all of which are mine. I do, however, acknowledge the cooperation of the authors and publishers whose permission made the volume possible, the translations by Mrs. Ursula Stechow and Dr. Lawrence Wilson, and the invaluable and diversified help of the library staff and facilities at Oberlin College, the South Branch of the University of Georgia, and the Savannah River Laboratory. I am continually grateful to my wife, Peggy, for her editorial assistance but more for her encouragement and understanding. A sabbatical leave from Oberlin (1963-64) provided the time to complete this undertaking.

EDWARD J. KORMONDY

<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARLY NATURAL HISTORY</td>
</tr>
<tr>
<td>THEOPHRASTUS—c. 300 B.C. Enquiry into plants</td>
</tr>
<tr>
<td>LINNAEUS—1750 History of plants</td>
</tr>
<tr>
<td>RENÉ ANTOINE FERCHAULT DE RÉAUMUR—c. 1742 The natural history of ants</td>
</tr>
<tr>
<td>THE PHYSICAL AND CHEMICAL ENVIRONMENT</td>
</tr>
<tr>
<td>Analysis of Environmental Factors</td>
</tr>
<tr>
<td>JUSTUS LIEBIG—1840 Organic chemistry in its application to vegetable physiology and agriculture</td>
</tr>
<tr>
<td>F. F. BLACKMAN—1905 Optima and limiting factors</td>
</tr>
</tbody>
</table>
THE STUDY OF POPULATIONS
Nature of Population Growth

THOMAS ROBERT MALTHUS—1798
An essay on the principle of population as it affects the future improvement of society 62

P. F. VERHULST—1838
Notice sur la loi que la population suit dans son accroissement 64

RAYMOND PEARL AND LOWELL J. REED—1920
On the rate of growth of the population of the United States since 1790 and its mathematical representation 66

ROYAL N. CHAPMAN—1928
The quantitative analysis of environmental factors 69

CHARLES S. ELTON—1924
Periodic fluctuations in the numbers of animals: their causes and effects 73

Interaction of Populations

PAUL R. BURKHOLDER—1952
Cooperation and conflict among primitive organisms 77

G. F. GAUSE—1934
Competition for common food in protozoa 82

JOSEPH H. CONNELL—1961
The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus 86

H. ELIOT HOWARD—1920
Territory in bird life 90

WILLIAM MORTON WHEELER—1918
A study of some ant larvae with a consideration of the origin and meaning of the social habit among insects 94

W. C. ALLER—1926
Studies in animal aggregations: causes and effects of bunching in land isopods 98

Regulation of Populations

DAVID LACK—1948
Natural selection and family size in the starling 102
L. C. Birch—1957
The role of weather in determining the distribution and abundance of animals 106

A. J. Nicholson—1957
The self-adjustment of populations to change 109

Nelson G. Hairston, Frederick E. Smith, and Lawrence B. Slobodkin—1960
Community structure, population control, and competition 113

THE STUDY OF COMMUNITIES
Characteristics of Communities
Edward Forbes—1844
Report on the Mollusca and Radiata on the Aegean Sea, and on their distribution considered as bearing on geology 118

Karl Möbius—1877
An oyster-bank is a biocenose, or a social community 121

Eugene Warming—1909
Oecology of plants, an introduction to the study of plant communities 125

Henry C. Cowles—1899
The ecological relations of the vegetation on the sand dunes of Lake Michigan 129

Calvin McMillan—1959
The role of ecotypic variation in the distribution of the central grassland of North America 133

Edward S. Deevey, Jr.—1939
Studies on Connecticut lake sediments. I. A postglacial climatic chronology for southern New England 137

Nature of the Community
Frederic E. Clements—1916
Plant succession, an analysis of the development of vegetation 140

V. N. Sukatchew—1928
Principles of classification of the spruce communities of European Russia 144

Josias Braun-Blanquet and Ernst Furrer—1913
Remarques sur l'étude des groupements de plantes 147

L. G. Ramensky—1926
Die Grundgesetzmäßigkeiten im Aufbau der Vegetationsdecke 151

H. A. Gleason—1926
The individualistic concept of the plant association 153

Stanley A. Cain—1947
Characteristics of natural areas and factors in their development 157

R. H. Whittaker—1953
A consideration of climax theory: the climax as a population and pattern 159

THE CONCEPT OF THE ECOSYSTEM
The Ecosystem Concept
Francis C. Evans—1956
Ecosystem as the basic unit in ecology 166

Stephen A. Forbes—1887
The lake as a microcosm 168

Energetics of Ecosystems
Edgar Nelson Transue—1926
The accumulation of energy by plants 171

Chancey Juday—1940
The annual energy budget of an inland lake 174

Raymond L. Lindeman—1942
The trophic-dynamic aspect of ecology 179

George L. Clarke—1946
Dynamics of production in a marine area 184

Howard T. Odum—1957
Trophic structure and productivity of Silver Springs, Florida 188

Biogeochemical Cycling
H. W. Harvey—1926
Nitrate in the sea 191

O. Arrhenius—1922
Hydrogen ion concentration, soil properties and growth of higher plants 193
INTRODUCTION

It has been said that ecology is as diversified in its scope and meaning as are the diverse Homo sapiens that call themselves ecologists. While this belies the situation, it does intimate the great disparity in orientation and approach to the field. One of the beneficial results of this diversity has been the accumulation of a wealth of data and interpretation providing fertile ground for the development of theory. Among the less salutary consequences of this protean posture has been the judgment that ecology is but a point of view rather than a scientific discipline. An anthology provides an opportunity for different ecologists to react indirectly to that criticism and in so doing to indicate the particular province of nature which they have carved out as their special area of inquiry.

Underlying the varied formulations describing ecology is the theme that it deals with the interactions of organisms and environment. Although Haeckel is usually credited with the event, Reiter appears to have been the first to combine the Greek words oikos (== house) and logos (==study of) to form the term ecology; this was in 1865. It was Haeckel, however, who in 1866 first gave definition to the term as "the body of knowledge concerning the