
Pleistocene Speciation and the
Mitochondrial DNA Clock

John Klicka and Robert M. Zink (1) used
pairwise mitochondrial DNA (mtDNA) dis-
tance data and a 2% per million year (My)
“mtDNA clock” to examine whether Late
Pleistocene (#250,000 years ago) glaciations
may have been an important mechanism of
speciation in North American songbirds.
They conclude that sequence divergence val-
ues and corresponding estimates of times of
evolutionary divergence between presump-
tive sister pairs of North American songbirds
were sufficiently large to reject a Late Pleis-

tocene Origins model (LPO model, 2) for
most species. Furthermore, they conclude
that the majority of North America’s “young-
est” species of songbirds originated in the
Late Pliocene or Early Pleistocene, which
would suggest that Pleistocene glaciation, in
general, did not play an important role in
shaping patterns of speciation in this group.
These conclusions are not supported by the
data in the report (1).

There are three major problems with the
report by Klicka and Zink: (i) the authors

apparently assumed that dates of divergence
can be accurately estimated by dividing ob-
served mtDNA divergence values, uncorrect-
ed for saturation (superimposed substitutions)
(3), by an uncorrected rate (2% per My) of
mtDNA evolution; (ii) they did not provide a
measure of error associated with their esti-
mated dates; and (iii) they did not provide a
test of their implicit assumption that a molec-
ular clock holds for their data.

In order to estimate dates of divergence
from DNA sequence distance data under the
assumption of a molecular clock, the number
of substitutions that have occurred since two
sequences diverged must be estimated under
an appropriate model of nucleotide substitu-
tion. This applies to the taxonomic group for
which dates are to be estimated (that is, North
American passerines) and also for the group
or groups on which the rate calibration (the
“clock”) is based. Otherwise, because ob-
served sequence divergence does not accu-
mulate linearly over time, the rate of substi-
tution will be underestimated, and estimated
dates of divergence will be biased. Only when
all of the distances are adequately corrected
for superimposed substitutions will the effect
of time (and saturation) be factored out (4).

To illustrate this point, we obtained
Klicka and Zink’s original cytochrome b se-
quence data [available for 21 of the 35 spe-
cies pairs they examined; sources “d,” “k,”
and “l” in table 1 of (1)] (5). We then used
likelihood ratio tests (LRTs) to determine the
best-fit model of nucleotide substitution for
the 21 species represented by at least 1000
base pairs (bp) from the cytochrome b gene
[source “k” in table 1 of (1)] (6 ). The best fit
model, the gamma-HKY85 (6 ), was then
used to correct for superimposed substitu-
tions for all 21 species pairs for which cyto-
chrome b data were provided (5).

We then used this same approach to de-
termine the best fit model and to correct for
superimposed substitutions in the cytochrome
b gene of two groups for which a 2% per My
mtDNA clock has been proposed: primates
(great apes plus humans), the group on which
the original 2% per My mtDNA clock was
based (7), and galliform birds (chicken Gal-
lus gallus plus the partridge genus Alectoris)
(8), one of the avian groups cited by Klicka
and Zink as having a 2% per My rate of
mtDNA evolution. With the use of published
estimates for the date of divergence between
chimpanzee and human (7), and between
chicken and partridge (8), we were able to
estimate a corrected rate of substitution for
the cytochrome b gene in these two groups
and, in the spirit of Klicka and Zink’s study,
use the corrected rate of substitution to re-
estimate dates of divergence for the 21 species
pairs of North American songbirds for which
cytochrome b data were made available (5).

For primates and galliform birds the rate

Fig. 1. Frequency distributions of estimated dates of mtDNA divergence for 21 presumptive sister
pairs of North American songbirds based on: (top) uncorrected mtDNA distances (5) and a 2% per
My mtDNA clock; and (bottom) corrected values of mtDNA sequence divergence estimated under
the best fit gamma-HKY85 model and a corrected rate of substitution for the cytochrome b gene
of 0.025 substitutions per site per My (9, 16). Dates based on uncorrected values of sequence
divergence are considerably younger than those based on uncorrected values (17).

T E C H N I C A L C O M M E N T S

www.sciencemag.org SCIENCE VOL 282 11 DECEMBER 1998 1955a



of substitution estimated for the cytochrome
b gene under the best-fit model (the gamma-
HKY85 model in each case) was 0.0278 and
0.0252 substitutions per site per lineage per
My, respectively, or more than 2.5 times
faster than the rate predicted by a 2% per My
mtDNA clock (0.01 substitutions per site per
lineage per My) (9). This increase in the
estimated rate of substitution is directly relat-
ed to saturation. The best fit model uses a
gamma distribution to incorporate among-site
rate heterogeneity and predicts that the actual
number of substitutions that have occurred
since the divergence of chimpanzees and hu-
mans, and since the divergence of chicken
and Alectoris, is much greater than the num-
ber that can be directly observed, and consid-
erably more than the number predicted by
models of nucleotide substitution that do not
address among-site rate heterogeneity (10).

Correcting for saturation under the gam-
ma-HKY85 model has a large effect on esti-
mated dates of divergence and temporal pat-
terns of speciation in North American song-
birds (Fig. 1). Whereas a scenario based on
uncorrected distances and a 2% per My
mtDNA clock would suggest that 86% of the
21 avian species pairs diverged before the
Pleistocene, corrected distances and a cor-
rected rate of 0.025 substitutions per site per
lineage per My predict that 76% of these
species pairs have mtDNA divergences esti-
mated to have occurred within the Pleisto-
cene (11). Furthermore, because mtDNA
haplotypes diverge within a common ances-
tral population before species are formed,
species are younger than the ages estimated
for the coalescence of their haplotypes (typ-
ically by several hundred thousand years in
birds) (12). Therefore, based on our correc-
tions, a Pleistocene origin can be safely ruled
out for only a few of the 21 species pairs for
which cytochrome b data were made avail-
able; the majority of avian species pairs
would have divergences in the early-to-mid-
dle Pleistocene, a time of major glacial activ-
ity in North America (13). Approximately
10% of these divergences would fall within
the last few hundred-thousand years.

The second problem we address is that
Klicka and Zink do not provide a measure of
error associated with their estimated dates of
divergence. The error inherent in estimating
dates of divergence using a molecular clock
tends to be quite large (14). For example,
based on the confidence limits depicted by
Hillis et al. (14) for dates of divergence
estimated by regression from the original pri-
mate 2% per My mtDNA clock (7), none of
the estimated dates of divergence reported by
Klicka and Zink would have a lower 95%
confidence limit that did not include zero
years (that is, the present). Therefore, even if
we were to overlook the issue of saturation
and accept Klicka and Zink’s estimated dates,

there would still be little statistical support
for rejecting the LPO model.

Finally, Klicka and Zink’s conclusions
depend on their assumption that a molecular
clock holds for their data, yet they did not
provide a test of this assumption. We used a
likelihood ratio test (LRT) to test for a mo-
lecular clock in the 21 species of North
American songbirds represented by $1000
bp of cytochrome b data. The results call for
rejection of the molecular clock hypothesis
(15). Therefore, even if Klicka and Zink had
addressed the issues of saturation and error
outlined above, their study would still not be
valid because the songbird sequences they
examined are not evolving in a clock-like
manner.

Accurately estimating dates of divergence
from molecular data is, at best, a challenging
process. Saturation, error, and differences in
the rate of molecular evolution among lineag-
es must be addressed before strong biological
conclusions can be drawn from evolutionary
dates based on molecular clocks. Although
the LPO model may not accurately reflect
temporal patterns of speciation in North
American songbirds, it cannot be rejected on
the basis of the report by Klicka and Zink.
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Response: In our report (1), we challenged
the conventional notion that a previously de-
fined set of North American songbird (order
Passeriformes) species pairs originated as a
consequence of being isolated during the last
one [100,000 years before the present (B.P.)]
or two (250,000 years B.P.) cycles of North
American glaciations (2). Mitochondrial DNA
(mtDNA) sequence divergences calculated
for 35 such pairs of sister species differed on
average by 5.1%. This value is an order of
magnitude greater than the amount of diver-
gence expected of species that originated
within the last 250,000 years (the Late Pleis-
tocene as we defined it). On this basis, and
two other lines of evidence (3), we rejected
the prevailing model of “Late Pleistocene
Origins” (LPO) for this particular group of
birds. We are gratified that Arbogast and
Slowinski’s “reanalysis” supports our main
conclusion. Even accepting their recalibra-
tion, for the moment, 19 of the 21 (90%)
species pairs that they examined diverged
over 1 million years ago [figure 1 (bottom) of
the comment]. There are, however, problems
with their analysis.

Our original conclusions were derived
from three main assumptions regarding North
American songbirds of recent origin: (i) that
rates of sequence evolution are constant
(clock-like) among species pairs; (ii) that un-
corrected molecular distances provide a rea-
sonably accurate measure of molecular evo-

lution; and, (iii) the 2% per My rate (4) of
evolution is a reasonable divergence rate (5)
for this set of species. Arbogast and Slowin-
ski contend that these assumptions are biased
such that our study fails to provide a test of
the LPO. We disagree.

The first challenge raised by Arbogast and
Slowinski concerns our assumption that our
sequences are evolving in a clock-like man-
ner. They purport to demonstrate that our data
show among-taxon rate heterogeneity, thus
invalidating our study. In fact, the highly
significant likelihood ratio test (LRT) that
Arbogast and Slowinski report is an errone-
ous result of enforcing the molecular clock
assumption on an improperly rooted phylog-
eny. When rooted correctly the results of the
LRT for a molecular clock are not significant
(6 ), indicating that the assumption of homo-
geneous rates among taxa is valid for this
data set (7, 8). Thus, their conclusion that
among-taxon rate heterogeneity negates our
test of the LPO is spurious.

A second disagreement concerns the time
at which significant levels of saturation
(multiple substitutions over time at the same
base position) occur. The maximum likelihood
model Arbogast and Slowinski used (gamma-
HKY85) is presumed to estimate more accu-
rately the true number of substitutions that
have accrued between two DNA sequences
since they diverged from a common ancestor.
For example, the average uncorrected diver-

gence for the three Passerina buntings in our
common data set is 6.63%. The gamma-cor-
rected divergence estimate for these same
three closely related species averages 8.76%,
an increase of 32% due entirely to putative
saturation effects. As another example, the
human-chimpanzee observed distance of
11% has a gamma-HKY85 distance of
27.4%. Thus, the method used by Arbogast
and Slowinski would indicate that saturation
is substantial, if not enormous, even at rela-
tively low levels of divergence (9).

This conclusion, however, conflicts with
empirical evidence. Of the mtDNA distance
estimates obtained in our study, 94% (33 of
35) differed by less than 10%. Most studies
suggest that saturation would not bias rate
calibrations until uncorrected sequence diver-
gences exceed this value (10) and all plots of
avian mtDNA genetic distances (by codon
position) versus time, of which we are aware,
are linear within this range. For avian cyto-
chrome b data, the evidence suggests that
“progress toward transition saturation accel-
erates between 10% and 18% divergence”
(11). More compelling, a plot of distances
derived from cytochrome b (a 5 0.22) versus
those for a nuclear intron (b-fibrinogen intron
7, a 5 0.89) for woodpeckers (order Pici-
formes) is linear to approximately 13% (12).
Because noncoding introns are thought to be
relatively less biased measures of time, this
correlation is strong support for the linear
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relationship of cytochrome b divergence and
time at the evolutionary level we considered.
In contrast, the maximum likelihood model
of Arbogast and Slowinski suggests signifi-
cant non-linearity by 5% sequence diver-
gence. The discrepancy between the empiri-
cal evidence and their conclusions is likely
due, in part, to the maximum likelihood mod-
el that they used overestimating saturation, at
least at low levels of molecular divergence
(13).

A third issue concerns calibration—“set-
ting” the clock. Arbogast and Slowinski de-
rive a “universal” vertebrate substitution rate
of roughly 5% per My from primate and
galliform data sets. Arbogast and Slowinski
did not justify the extrapolation of substitu-
tion and rate parameters derived from older
and unrelated taxa onto recently evolved
songbirds (14). That primates display signif-
icantly heterogeneous rates of mtDNA evo-
lution has been established elsewhere (8).
Sequences not evolving in a clock-like man-
ner would seem to be a questionable source
with which to calibrate a general vertebrate
clock. The partridge (Alectoris)-chicken (Gal-
lus) calibration also does not inspire confi-
dence. Curiously, Arbogast and Slowinski
used the original partridge data of E. Randi
(15), but not the age of the fossil that Randi,
after examination of all available data, con-
sidered correct for calibration purposes. It
would seem that Arbogast and Slowinski
chose, from among a range of potential val-
ues (8 to 20 My), the “fossil” date that yield-
ed a substitution rate most similar to the one
obtained for primates. The date that they did
choose to represent the time of partridge-
chicken divergence (17 My B.P.) in fact rep-
resents an indirect “provisional estimate”
(16 ) that was obtained from restriction map-
ping of nuclear genes. Calibrations based on
other molecular markers are generally con-
sidered inappropriate (17).

If possible, calibrations should be derived
from within the group of organisms for which
they are used (17). Arbogast and Slowinski
do not mention the only relevant calibration
available (18), that of the Hawaiian honey-
creepers. This study has relevance to our
work in that (i) it considers songbirds of
similar body size and generation length (19),
(ii) these species have recent origins, and (iii)
the calibration dates (emergence times for
three different islands) are recent and well
established. With the use of cytochrome b
sequence data and similar analytical methods
(a maximum likelihood model with a gamma
correction) to obtain divergence estimates,
Fleischer et al. (18) obtained a substitution
rate of 0.008 per site per lineage per million
years (1.6% per My), a rate very different
from those (over 5%) derived from pri-
mates and fowl by Arbogast and Slowinski.
This songbird calibration suggests that the

plot of divergence values [figure 1 (top) of
the comment] would be pushed slightly to
the right (older), not to the left as Arbogast
and Slowinski’s reanalysis [their figure
(bottom)] would indicate (20). In sum, the
difference in the two histograms (figure 1
in the comment) stems from (i) recomputed
mtDNA distances corrected for saturation,
and (ii) a calibration of these distances
based on primates/fowl. Both aspects are
not correct.

Arbogast and Slowinski note that stochas-
tic error associated with a molecular clock
may be nontrivial. A general regression of
separation times on sequence divergence for
birds is lacking for the reasons they suggest.
Although regression error values are typically
large, this is, in part a statistical artifact re-
sulting from an inadequate number of cali-
bration points (that is, accurate fossil dates).
We agree that more independent and recent
fossil calibrations are needed, but this discus-
sion detracts from our main focus on song-
bird diversification during the most recent
250,000 years. It is difficult to envision a
plausible clock correction that would com-
press 5% sequence divergence into the last
250,000 years. However, a relevant regres-
sion would be constructed using songbird
divergences. In their study of Hawaiian hon-
eycreepers, Fleischer et al. (18) compared
gamma-corrected cytochrome b distances
with island emergence times in a regression
analysis. The tight linearity of their plot
(Mantel matrix r 5 0.995, P 5 0.018) implies
the existence of a predictable rate of molec-
ular evolution in recently evolved songbirds
with a higher degree of precision than Arbo-
gast and Slowinski recovered by using the
primate regression (21).

The conclusions that can be supported by
the reanalysis in the comment differ little
from our own. Both analyses falsify the LPO
model of speciation, and both support (see
figure 1 of the comment) our contention that
(1, p. 1668) “the majority of the ‘youngest’
songbird species have late Pliocene or early
Pleistocene origins.” Arbogast and Slowinski
state that we (1) suggest that “Pleistocene
glaciation, in general, did not play an impor-
tant role in shaping patterns of speciation in
this group.” In fact we (1, p. 1668) stated,
“Periodic glacial cycles may have strongly
influenced the diversification of the North
American songbird fauna. . .” albeit over a
more extended period (22). We stand by our
original conclusion (1) that the LPO model of
North American songbird evolution is not
correct.

John Klicka
Robert M. Zink

J. F. Bell Museum of Natural History,
University of Minnesota,

St. Paul, MN 55108, USA
E-mail: rzink@biosci.cbs.umn.edu
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