CSC 360 Mid-Term Exam 1

This exam carries 20% of course grade
Time Limit: 75 minutes

NAME:

- 1. (2 points, (1 point each))
 - (a). State whether the following functions $f: N \to N$ (which map from set of Natural numbers N to set of natural numbers N) are (i). **one-to-one** or **many-to-one**; (ii). **into** or **onto**; and (iii). **partial** or **total**.

$$f(n) = n\%5$$

(n%5 returns the remainder when divided by 5)

(b). State whether the following binary relation P between Natural numbers is (i) Reflexive; (ii). Symmetric; (iii). Transitive.

$$[x,y] \in P \text{ if } x\%y == 0$$

(x and y are related if x is evenly divisible by y).

2. (3 points)

Give a regular expression that represents the described set. The set of strings over $\{a, b, c\}$ which does not contain the substring ac.

3. (3 points). Give a regular expression that represents the described set. The set of strings over $\{a, b, c\}$ which do not begin with 'bb' and which do end with 'cc'.

4. (3 points) Construct a Context Free grammar over $\{a,b,c\}$ whose language is $\{a^nb^{2n}c^m\mid n>0,m>0\}$.

5. (3 points). Construct a Context Free grammar over $\{a,b,\}$ whose language is $\{a^mb^n\mid 0\leq n\leq m\leq 3n\}$.(i.e., number of a's is at least as many as b's but no more than 3 times the count of b's)

6. (3 points) Give a grammar for a regular language which generates strings over $\{a,b\}$ with at least two a's.

7. (3 points). Let G be the grammar

$$S \to abSc \mid A$$

$$A \to cAd \mid cd$$

What is L(G) Give your answer in set notation $\{...\}$.