PARALLEL ALGORITHMS FOR MAXIMUM INDEPENDENT SET IN TRAPEZOID GRAPHS

Gur Saran Adhar Department of Computer Science Univ. of North Carolina Wilmington, USA

Definition: Trapezoid Representation

A double interval $I = (I_x, I_y)$ has **trapezoid** representation T(I) defined as follows:

Given two parallel Real lines R_1 and R_2 , if l_x and r_x denote the left and right end points of interval I_x on the real line R_1 , and l_y and r_y denote the left and right end points of interval I_y on the real line R_2 , then the trapezoid associated with double interval I is the convex hull of the four corner points l_x , and r_x on line R_1 and the points l_y , and r_y on line R_2 .

Definition: Trapezoid Graph

An undirected graph G = (V, E) is a **trapezoid graph** if there is a mapping $f: V \to \mathcal{T}$ from the set of vertices V to a set \mathcal{T} of trapezoids and that there is an edge $(x,y) \in E$ between vertex x and vertex y in the graph whenever the intersection between the trapezoid mapping x and the trapezoid mapping y is nonempty i.e., $f(x) \cap f(y) \neq \phi$.

+

6

Definition: Box Representation

A double interval $I = (I_x, I_y)$ has **box representation** B(I) in two dimensional rectilinear plane defined as follows:

If l_x and r_x denote the left and right end points of interval I_x on a real line R_1 , and l_y and r_y denote the left and right end points of interval I_y on a real line R_2 , then the lower left corner ll(B(I)) of the box B(I) is at the coordinates (l_x, l_y) and the upper right corner ur(B(I)) of the box B(I) is at coordinates (r_x, r_y) .

Definition: Box Domination

A box B(y) = (ll(B(y)), ur(B(y))) dominates another box B(x) = (ll(B(x)), ur(B(x))), denoted B(x) < B(y), iff ur(B(x)) < ll(B(y)) (i.e., upper right corner ur(B(x)) of box B(x) lies entirely to the left and below the lower left corner ll(B(y)) of the box B(y)).

Definition: Box Direct Domination

A box B(y) = (ll(B(y)), ur(B(y))) directly dominates another box B(x) = (ll(B(x)), ur(B(x))), denoted B(x) << B(y), iff B(x) < B(y) and there is no other box B(k) such that B(x) < B(k) < B(y).

Definition: In-Between Box, Trapezoid

An **in-between** box, denoted as $B_{[j,i]}$, is a box such that box B_i directly dominates box B_j (i.e., $B_j << B_i$) and the lower-left corner of in-between box $B_{[j,i]}$ is coincident with the upper-right corner of box B_j and the upper-right corner of in-between box $B_{[j,i]}$ is coincident with the lower-left corner of box B_i .

An **in-between** trapezoid, corresponds to an inbetween box.

Definition: Maximal Chain of Boxes

A **chain** of boxes is a sequence in which each box dominates all the preceding boxes in the sequence. The chain is **maximal chain** if no other box can be included in the sequence.

Lemma

A sequence of boxes $\sigma = (B_0, B_1, B_2, \dots, B_k)$ is a maximal chain iff $B_j << B_{j+1}$ for all $j = 0 \dots, k-1$ (every box in the sequence directly dominates its predecessor).

Lemma

Let \mathcal{T} be the set of all trapezoids and $T_0, T_1, T_2, \ldots, T_k$ be any maximal chain with box representations $B_0, B_1, B_2, \ldots, B_k$ such that $B_0 << B_1 << B_2 << \ldots, B_k$, then the alternate sequence of boxes and in-between boxes $B_0, [0,1], B_1, [1,2], B_2, [2,3], \ldots, [k-1,k], B_k$ corresponds to a trapezoid which spans the entire set \mathcal{T}

+ +

19

21

Algorithm Maximum Chain

(input T :set_of_trapezoids;

output \mathcal{I} : Maximum Chain (Maximum Independent Set)

begin

- i for all trapezoids $T \in \mathcal{T}$ in parallel construct box representation B
- ii for all lower left corner points x in box representation in parallel call CountOfLt(x)
- iii **for all pairs** of corner points (x, y) **in parallel** mark the box pairs B_x, B_y if $Direct_Domination(x, y)$ returns true
- iv **for pairs** of boxes (B_x, B_y) marked in step-(iii), define an in-between box $B_{[x,y]}$
- v In parallel Orient all boxes anti-clockwise
- vi **In parallel** Corner Stitch box B_x with in-between box $B_{[x,y]}$
- vii **In parallel** traverse chain of boxes from B_0 to B_k ;

count number of boxes in the chain from B_0 to B_k .

viii **Output** the chain with maximum number of boxes as the Maximum Independent Set.

end.


```
function Direct_Domination(x, y: corner points)
begin

if (CountOfLt(y) - CountOfLt(S(x,y)) - CountOfLt(S(y,x)) + CountOfLt(x) == 0)

/* the count of boxes inside the region defined by corners

x and y is zero */

then

B_x >> B_y

/* Box with corner y directly dominates

Box with corner x*/

end.
```

References

Stefen Felsner, Rudolf Muller and Lorenz Wernisch, Trapezoid Graphs and Generalization, Geometry and Algorithms, Springer Verlag Lecture Notes in Computer Science (LNCS), Volume 824/1994.

Dagan, I., Golumbic, M.C., and Pinter, R.Y., Trapezoid Graphs and their Coloring, Discrete Applied Mathematics, 21 (1988), 35-46.

Y.Daniel Liang, Dominations in Trapezoid Graphs, Information Processing Letters, 52(1994) 309-315.

Hari Balakrishnan, Anand Rajaraman, C. Pandu Rangan, Connected Domination and Steiner Set on Asteroidal Triple-Free Graphs, Workshop on Algorithms and Data Structures (WADS'93), Springer Verlag Lecture Notes in Computer Science (LNCS), Volume 709/1993.